图像语义分割 pytorch复现DeepLab v1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)

图像语义分割 pytorch复现DeepLab v1图像分割网络详解以及pytorch复现(骨干网络基于VGG16、ResNet50、ResNet101)

  • 背景介绍
  • 2、 网络结构详解
    • 2.1 LarFOV效果分析
  • 2.2 DeepLab v1-LargeFOV 模型架构
  • 2.3 MSc(Multi-Scale,多尺度(预测))
  • 2.3 以VGG16为特征提取骨干网络代码

背景介绍

论文名称:Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

在这里插入图片描述

  • 2014 年发表于 CVPR
  • DeepLab v1 是一种用于语义分割的卷积神经网络模型,其核心思想是结合了全局上下文信息,以更好地理解图像中的语义内容。

论文中指出了当前图像语义分割的存在问题:

  • 下采样会导致图像的分辨率降低
    在 DCNN 中,通常通过池化层来进行信号下采样,这是为了减少特征图的尺寸和参数数量。然而,池化操作会导致特征图的空间分辨率降低,从而损失了一部分细节信息。在图像标注任务中,像素级的细节信息对于准确的标注非常重要,因此信号下采样可能会影响标注的质量。
    在这里插入图片描述
  • 空间不敏感
    DCNNs 在高级视觉任务中表现出色的一个原因是它们具有一定程度的平移、旋转、缩放等空间不变性。然而,对于像素级标注任务(如语义分割或像素级分类),我们希望网络能够对每个像素点进行精细的标注,这就需要网络具有较高的空间敏感性。然而,DCNNs 的不变性特性可能导致在特征提取过程中丢失一些空间信息,使得网络对于像素级标注任务不够敏感。

论文中解决以上两个问题的方案:
在这里插入图片描述

  • 1、采用空洞卷积
  • 2、采用fully-connected CRF(Condition Random Fie)(全连接条件随机场)
    CRF在语义分割领域是常用的方法,但是在DeepLab V3之后便不再使用

网络优势:

  • 速度更快,论文中说因为采用了膨胀卷积的原因,但fully-connect CRF很耗时
  • 准确率更高,相比之前最好的网络,提升了7.2个点
  • 结构简单,主要采用DCNN和CRFs级联构成在这里插入图片描述
    DeepLab:本文提出的语义分割模型
    MSc:Multi-Scale,多尺度
    CRF:全连接条件随机场,用于对图像进行后处理以改善分割或标注的结果。它通常用于在图像分割任务中对神经网络的输出进行精炼和优化
    LargeFOV:空洞卷积

2、 网络结构详解

DeepLab v1 的 Backbone 使用的是 VGG16作为主要的卷积神经网络架构(2014年最牛逼的分类网络为VGG)。在 DeepLab v1 中,VGG16 的部分或全部全连接层被去除,而只保留卷积层,并通过空洞卷积(Atrous Convolution)来增大感受野,从而实现对图像的全局上下文信息的捕获

VGG16 的结构包含 16 层卷积层和全连接层,其中包括 13 个卷积层和 3 个全连接层。该模型在 ImageNet 数据集上进行了训练,并在图像分类任务上取得了很好的性能。

2.1 LarFOV效果分析

在这里插入图片描述
将卷积核减小,比如从原来的 kernel_size = (7, 7) 变为 kernel_size = (4, 4) 或 kernel_size = (3, 3)
在这里插入图片描述

注意❗️

  • 这里替换全连接层的卷积层并非普通卷积层,而是一个膨胀卷积,它有一个膨胀系数 r,可以扩大感受野。
  • 图中的 input stride 其实是膨胀系数 r。

在这里插入图片描述

2.2 DeepLab v1-LargeFOV 模型架构

VGG系列网络结构:
在这里插入图片描述
DeepLab-LargeFOV 模型架构:
在这里插入图片描述

经过上采样得到 224 × 224 × num class的特征图并非模型最终输出结果,还要经过一个 Softmax 层后才是模型最终的输出结果。

Softmax 层的作用是将每个像素的类别预测转换为对应类别的概率。它会对每个像素的 num_classes 个类别预测进行归一化,使得每个预测值都落在 0 到 1 之间,并且所有类别的预测概率之和为 1。这样,对于每个像素点,我们可以得到每个类别的概率,从而确定该像素属于哪个类别的概率最大。最终的输出结果通常是经过 Softmax 处理后的特征图,其中每个像素点都包含了 num_classes 个类别的概率信息。

LargeFOV 本质上就是使用了膨胀卷积。

  • 通过分析发现虽然 Backbone 是 VGG-16 但使用 Maxpool 略有不同,VGG 论文中是 kernel=2,stride=2,但在 DeepLab v1 中是 kernel=3,stride=2,padding=1。接着就是最后两个 Maxpool 层的 stride 全部设置成了 1(这样下采样的倍率就从原来的 32 变成了 8)。最后三个 3 × 3 的卷积层采用了膨胀卷积,膨胀系数 r = 2。
  • 然后关于将全连接层卷积化过程中,对于第一个全连接层(FC1)在 FCN 网络中是直接转换成卷积核大小为 7 × 7,卷积核个数为 4096 的卷积层(普通卷积),但在 DeepLab v1 中作者说是对参数进行了下采样最终得到的是卷积核大小 3 × 3 ,卷积核个数为 1024 的卷积层(膨胀卷积)(这样不仅可以减少参数还可以减少计算量,详情可以看下论文中的 Table2),对于第二个全连接层(FC2)卷积核个数也由 4096 4096 采样成 1024(普通卷积)。
  • 将 FC1 卷积化后,还设置了膨胀系数(膨胀卷积),论文 3.1 中说的是 r = 4 但在 Experimental Evaluation 中 Large of View 章节里设置的是 r = 12 对应 LargeFOV。对于 FC2 卷积化后就是卷积核 1 × 1 ,卷积核个数为 1024 的普通卷积层。接着再通过一个卷积核 1 × 1 ,卷积核个数为 num_classes(包含背景)的普通卷积层。最后通过 8 倍上采样还原回原图大小。

注意❗️采用的是双线性插值(Bilinear Interpolation)的策略来实现上采样,双线性插值会考虑其周围 4 个最近的像素点根据距离权重进行插值计算。这样可以有效地将特征图还原到原始输入图像的大小,使得网络的输出和输入在空间尺寸上保持一致

2.3 MSc(Multi-Scale,多尺度(预测))

即融合多个特征层的输出
DeepLab-LargeFOV-MSc 模型架构
在这里插入图片描述

2.3 以VGG16为特征提取骨干网络代码

DeepLab-LargeFOV

#!/usr/bin/python
# -*- encoding: utf-8 -*-import torchvision
import torch
import torch.nn as nn
import torch.nn.functional as F斜体样式
class DeepLabLargeFOV(nn.Module):def __init__(self, in_dim, out_dim, *args, **kwargs):super(DeepLabLargeFOV, self).__init__(*args, **kwargs)# vgg16 = torchvision.models.vgg16()layers = []layers.append(nn.Conv2d(in_dim, 64, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 2, padding = 1))layers.append(nn.Conv2d(256, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 1, padding = 1))# 以下采用膨胀卷积layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.Conv2d(512,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2))layers.append(nn.ReLU(inplace = True))layers.append(nn.MaxPool2d(3, stride = 1, padding = 1))self.features = nn.Sequential(*layers)classifier = []classifier.append(nn.AvgPool2d(3, stride = 1, padding = 1))classifier.append(nn.Conv2d(512,1024,kernel_size = 3,stride = 1,padding = 12,dilation = 12))classifier.append(nn.ReLU(inplace=True))classifier.append(nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0))classifier.append(nn.ReLU(inplace=True))classifier.append(nn.Dropout(p=0.5))classifier.append(nn.Conv2d(1024, out_dim, kernel_size=1))self.classifier = nn.Sequential(*classifier)self.init_weights()def forward(self, x):N, C, H, W = x.size()x = self.features(x)x = self.classifier(x)x = F.interpolate(x, (H, W), mode='bilinear', align_corners=True)return xdef init_weights(self):vgg = torchvision.models.vgg16(pretrained=True)state_vgg = vgg.features.state_dict()self.features.load_state_dict(state_vgg)for ly in self.classifier.children():if isinstance(ly, nn.Conv2d):nn.init.kaiming_normal_(ly.weight, a=1)nn.init.constant_(ly.bias, 0)if __name__ == "__main__":net = DeepLabLargeFOV(3, 10)in_ten = torch.randn(1, 3, 224, 224)out = net(in_ten)print(out.size())in_ten = torch.randn(1, 3, 64, 64)mod = nn.Conv2d(3,512,kernel_size = 3,stride = 1,padding = 2,dilation = 2)out = mod(in_ten)print(out.shape)import osimport torchfrom torchsummary import summaryos.environ["CUDA_VISIBLE_DEVICES"] = "1"device = torch.device("cuda" if torch.cuda.is_available() else "cpu")net=DeepLabLargeFOV(3,21).to(device)print(summary(net,(3,224,224)))print(torch.cuda.current_device())

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/168682.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出Apache SeaTunnel SQL Server Sink Connector

在大数据时代,数据的迁移和流动已经变得日益重要。为了使数据能够更加高效地从一个源流向另一个目标,我们需要可靠、高效和易于配置的工具。今天,我们将介绍 JDBC SQL Server Sink Connector,这是一个专为 SQL Server 设计的连接器…

美国国防部网络战略如何改变国家网络防御

十年前,时任国防部长莱昂帕内塔说了一句后来臭名昭著的短语:“网络珍珠港”。帕内塔利用他作为该国主要国家安全官员的平台来警告美国未来将遭受可怕的数字攻击。 他警告说,能源基础设施、交通系统、金融平台等都容易受到剥削。媒体、专家和…

什么是Sectigo证书?

Sectigo证书,早前被称为Comodo证书,是一种SSL(安全套接层)证书,用于保护互联网上的数据传输的安全性和隐私性。这些证书由全球领先的SSL证书颁发机构Sectigo颁发,被广泛用于网站、应用程序和服务器上。本文…

广告掘金全自动挂机项目,单设备30+【软件脚本+技术教程】

广告掘金项目是一种越来越受欢迎的赚钱方式,它通过观看广告视频来获取收益。然而,手动观看每个广告视频可能会耗费大量时间和精力。为了简化操作并提升效率,我们可以利用全自动挂机脚本来完成这一任务。接下来,将为您介绍如何使用…

SpringCloud 微服务全栈体系(三)

第五章 Nacos 注册中心 国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba 也推出了一个名为 Nacos 的注册中心。 一、认识和安装 Nacos 1. 认识 Nacos Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eure…

【面试经典150 | 哈希表】快乐数

文章目录 写在前面Tag题目来源题目解读解题思路方法一:哈希集合判重方法二:快慢指针判重 其他语言python3 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为…

第二证券:风电概念强势拉升,威力传动“20cm”涨停,双一科技等大涨

风电概念20日盘中强势拉升,到发稿,威力传动“20cm”涨停,双一科技涨超17%,顺发恒业亦涨停,金雷股份、大金重工涨约7%,新强联、海力风电涨超5%。 音讯面上,9月以来江苏、广东海风项目加快推动&a…

第十五章 I/O(输入/输出)流

15.1 输入/输出流 流是一组有序的数据序列,可分为输入流和输出流两种。 程序从指向源的输入流中读取源中数据,源可以是文件、网络、压缩包或者其他数据源 输出流的指向是数据要到达的目的地,输出流的目标可以是文件、网络、压缩包、控制台和…

机器学习笔记 - 特斯拉的占用网络简述

一、简述 ​ 2022 年,特斯拉宣布即将在其车辆中发布全新算法。该算法被称为occupancy networks,它应该是对Tesla 的HydraNet 的改进。 自动驾驶汽车行业在技术上分为两类:基于视觉的系统和基于激光雷达的系统。后者使用激光传感器来确定物体的存在和距离,而视觉系统…

【tg】6: MediaManager的主要功能

【tg】2:视频采集的输入和输出 的管理者是 media manager‘ media 需要 network的支持:NetworkInterface friend class MediaManager::NetworkInterfaceImpl;NetworkInterfaceImpl 直接持有 MediaManager 的指针即可:发送rtp包、rtcp包、设置socket选项?

小程序 swiper滑动

整个红色区域为可滑动区域&#xff0c;数字1区域为展示区域&#xff0c;数字2为下一个展示模块 <scroll-view class"h_scroll_horizontal" enhanced"ture" bind:touchend"touchEnd" bind:touchstart"touchStart"><view clas…

从昏暗到明亮—改善照明环境,提升编程效率

作为一名程序员博主&#xff0c;长时间写代码、写博客&#xff0c;对着电脑屏幕的生活方式已经渐渐成为了我的日常。 然而&#xff0c;这种生活方式却给我的眼睛带来了相当大的压力。每当一天的工作结束&#xff0c;我的眼睛总是感到干涩、疲劳&#xff0c;让我感到不舒适。&am…

基于C语言 --- 自己写一个通讯录

C语言程序设计笔记---039 C语言之实现通讯录1、介绍C/C程序的内存开辟2、C语言实现通讯录2.1、ContactMain.c程序大纲2.2、Contact2.h2.3、Contact2.c2.3.1 InitContact( )初始化通讯录函数2.3.2 AddContact( )添加联系人和CheckCapaticy( )检查容量函数2.3.3、ShowContact( )显…

模式识别——高斯分类器

模式识别——高斯分类器 需知定义特殊情况&#xff08;方差一致&#xff09;Sigmoid 需知 所有问题定义在分类问题下&#xff0c;基于贝叶斯决策 定义 条件概率为多元高斯分布&#xff0c;此时观测为向量 X X 1 , X 2 , . . . , X n X{X_1,X_2,...,X_n} XX1​,X2​,...,Xn​…

Docker Service 创建

Docker Swarm Mode Docker Swarm 集群搭建 Docker Swarm 节点维护 Docker Service 创建 service 只能依附于 docker swarm 集群&#xff0c;所以 service 的创建前提是&#xff0c;swarm 集群搭建完毕。 1. 创建 service docker service create 命令用于创建 service&#xff…

【C++项目】高并发内存池第二讲中心缓存CentralCache框架+核心实现

CentralCache 1.框架介绍2.核心功能3.核心函数实现介绍3.1SpanSpanList介绍3.2CentralCache.h3.3CentralCache.cpp3.4TreadCache申请内存函数介绍3.5慢反馈算法 1.框架介绍 回顾一下ThreadCache的设计&#xff1a; 如图所示&#xff0c;ThreadCache设计是一个哈希桶结构&…

前端领域的插件式设计

插件&#xff0c;是一个常见的概念。 例如&#xff0c;当我们需要把我们前端代码中的 css 样式提取打包&#xff0c;我们可以用 webpack 的 mini-css-extract-plugin&#xff0c;或者你如果用 rollup 的话&#xff0c;可以选择 rollup-plugin-postcss。 再比如我们可以给 bab…

RDB.js:适用于 Node.js 和 Typescript 的终极对象关系映射器

RDB.js 是适用于 Node.js 和 Typescript 的终极对象关系映射器&#xff0c;可与 Postgres、MS SQL、MySQL、Sybase SAP 和 SQLite 等流行数据库无缝集成。无论您是使用 TypeScript 还是 JavaScript&#xff08;包括 CommonJS 和 ECMAScript&#xff09;构建应用程序&#xff0c…

X32位汇编和X64位区别无参函数分析(一)

前言 一、X32汇编函数无参无返回分析 二、X64汇编函数无参无返回分析 总结 前言 提示&#xff1a;以下是个人学习总结&#xff1a;如有错误请大神指出来&#xff0c;只供学习参考&#xff0c;本内容使用使用VS2017开发工具&#xff1a;语言是C&#xff0c;需要一些常见的汇编指…

MySQL1——喵喵期末不挂科

宝宝&#xff0c;你不点个赞吗&#xff1f;不评个论吗&#xff1f;不收个藏吗&#xff1f; 最后的最后&#xff0c;关注我&#xff0c;关注我&#xff0c;关注我&#xff0c;你会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的很重要…