基于RM编译码的协作MIMO系统误码率matlab仿真,对比不同RM编译码参数

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2013b

3.部分核心程序

......................................................................
[V1,N1,K1,I1] = func_rm(r+1,m);
%R
[V2,N2,K2,I2] = func_rm(r,m);
for k = 1:length(SNR)kErr = 0;Num = 0;Len = 10000;TL  = 500;   Rt  = K1/N1;%code rateN01 = 10^(-SNR(k)/Rt/10);Rt  = K2/N1;%code rateN02 = 10^(-SNR(k)/Rt/10);Rt  = (K1+K2)/(N1+N2);%code rateN03 = 10^(-SNR(k)/Rt/10);   while(Err <= TL)kErrNum = Num + 1;%产生数据K             = min(K1,K2);Signal0       = randint(1,K,M,Len);Signal        = [Signal0,zeros(1,K1-K2)];%*****************************************************************%RM编码Signal_RM_S2D = func_Encode(Signal,V1);%调制RM_mod_S2D    = modulate(mods,Signal_RM_S2D);%过瑞利衰落信道,2条多径RM_Noise_S2D0 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); RM_Noise_S2D1 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D));RM_Noise_S2D1 = [zeros(1,3),RM_Noise_S2D1(1:end-3)];RM_Noise_S2D2 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); RM_Noise_S2D2 = [zeros(1,3),RM_Noise_S2D2(1:end-3)];RM_Noise_S2D  = RM_Noise_S2D0 + 0.2*RM_Noise_S2D1 + 0.1*RM_Noise_S2D2;%*****************************************************************%中继部分RM_demod_S2R  = demodulate(demods,RM_Noise_S2D);Bhat_S2R      = func_Decode(RM_demod_S2R,r+1,m,V1,N1,K1,I1); %RM编码Signal_RM_S2R = func_Encode(Bhat_S2R(1:K),V2);%调制RM_mod_S2R    = modulate(mods,Signal_RM_S2R);%过信道RM_Noise_S2R  = RM_mod_S2R + sqrt(2*N03)*randn(size(RM_mod_S2R)); %*****************************************************************%解调RM_demod_S2D  = demodulate(demods,[RM_Noise_S2D,RM_Noise_S2R]);LEN           = length(RM_demod_S2D);%RM译码Bhat_S2D1     = func_Decode(RM_demod_S2D(1:LEN/2),r+1,m,V1,N1,K1,I1); Bhat_S2D2     = func_Decode(RM_demod_S2D(LEN/2+1:LEN),r,m,V2,N2,K2,I2); %计算误码率Err           = Err + min([sum(xor(Bhat_S2D1(1:K),Signal0)),sum(xor(Bhat_S2D2(1:K),Signal0))]);endErrs(k) = Err/Num/length(Signal);
end    figure
semilogy(SNR,Errs,'b-o');
grid on;
xlabel('SNR');
ylabel('Bit error');
if m == 4save r14.mat SNR Errs
end
if m == 5save r15.mat SNR Errs
end
if m == 6save r16.mat SNR Errs
end
01_106m

4.算法理论概述

       基于RM编译码的协作MIMO(多输入多输出)系统是一种利用多个天线和协作传输来提高通信系统性能的技术。

       Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。RM码自上世纪五十年代被Muller和Reed提出至今,已被应用在多种通信系统中,包括深空通信、蜂窝网络等.Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。

       基于RM编译码的协作MIMO系统利用了空间分集和协作传输的思想,通过多个天线和节点之间的协作,提高了信号的可靠性和覆盖范围。具体而言,当一个节点发送信号时,其附近的节点会接收到这个信号,并对其进行解码和转发,以帮助源节点将信号传输到目的节点。这样,通过多个节点的协作,可以有效地提高信号的可靠性和传输效率。

       RM编译码是一种纠错码技术,通过在信号中加入冗余信息,使得接收端能够纠正传输过程中的错误。在协作MIMO系统中,RM编译码可以用于提高协作传输的可靠性,减少误码率。

基于RM编译码的协作MIMO系统的数学模型可以表示为:

y = Hx + n

其中,y表示接收端接收到的信号,H表示信道矩阵,x表示发送端发送的信号,n表示噪声。

       在这个模型中,发送端和接收端都配备了多个天线,形成了一个MIMO系统。通过利用空间分集和协作传输,可以有效地提高信号的可靠性和传输效率。同时,RM编译码的应用可以进一步提高系统的纠错能力。

       基于RM编译码的协作MIMO系统的实现需要考虑多个方面,包括天线设计、信号处理、编译码技术等。下面是一个简单的实现过程:

天线设计:在发送端和接收端设计多个天线,以实现协作传输。
信号处理:对发送的信号进行预处理,例如调制、编码等,以提高信号的抗干扰能力和可靠性。
协作传输:在发送端和接收端之间建立协作传输机制,使得附近的节点能够接收到信号并对其进行解码和转发。
RM编译码:在发送端和接收端应用RM编译码技术,以提高系统的纠错能力和可靠性。
        综上所述,基于RM编译码的协作MIMO系统是一种有效的提高通信系统性能的技术,通过多个天线和节点之间的协作,以及RM编译码的应用,可以实现空间分集、协作传输和纠错能力的提升。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/169444.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…

前端性能优化 - 虚拟滚动

一 需求背景 需求&#xff1a;在一个表格里面一次性渲染全部数据&#xff0c;不采用分页形式&#xff0c;每行数据都有Echart图插入。 问题&#xff1a;图表渲染卡顿 技术栈&#xff1a;Vue、Element UI 卡顿原因&#xff1a;页面渲染时大量的元素参与到了重排的动作中&#x…

代码随想录 Day26贪心算法01-上

目录 前言:贪心无套路 本质: 两个极端 贪心的小例子 贪心无套路!!! LeetCode T455 分发饼干 题目思路: 1.优先考虑胃口:大饼干喂饱大胃口 2.优先考虑饼干:小饼干先喂饱小胃口 前言:贪心无套路 本质: 局部最优去推导全局最优 两个极端 贪心算法的难度一般要么特别简单,要…

Mac Intellij Idea get/set方法快捷键

Control Retrun(回车键) Command n 参考&#xff1a; Mac Intellij Idea get/set方法快捷键-CSDN博客

2018年亚太杯APMCM数学建模大赛A题老年人平衡能力的实时训练模型求解全过程文档及程序

2018年亚太杯APMCM数学建模大赛 A题 老年人平衡能力的实时训练模型 原题再现 跌倒在老年人中很常见。跌倒可能会导致老年人出现许多并发症&#xff0c;因为他们的康复能力通常较差&#xff0c;因此副作用可能会使人衰弱&#xff0c;从而加速身体衰竭。此外&#xff0c;对跌倒…

ESP32C3 LuatOS TM1650①驱动测试

合宙TM1650驱动资料 TM1650.lua源码 引脚连接 TM1650ESP32C3SCLGPIO5SDAGPIO4 下载TM1650.lua源码&#xff0c;并以文件形式保存在项目文件夹中 驱动测试源码 --注意:因使用了sys.wait()所有api需要在协程中使用 -- 用法实例 PROJECT "ESP32C3_TM1650" VERSION …

数据结构:选择题+编程题(每日一练)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;单值二叉树 思路一&#xff1a; 题二&#xff1a;二叉树的最大深度 思路一&#xff1a; 本人实力有限可能对…

KekeBlog项目实战后台模块(二)(已完结)

十一、后台模块-菜单列表 菜单指的是权限菜单&#xff0c;也就是一堆权限字符串 1. 查询菜单 1.1 接口分析 需要展示菜单列表&#xff0c;不需要分页。可以针对菜单名进行模糊查询。也可以针对菜单的状态进行查询。菜单要按照父菜单id和orderNum进行排序 请求方式 请求路径…

【QT开发(10)】QT 进程

文章目录 1.1 运行一个新进程1.2 QProcess 还可以对一些信号进行关联2 进程间通信2.1 使用共享内存实现进程通信2.2 演示 代码仓库参考 1.1 运行一个新进程 使用类 QProcess&#xff0c;允许将一个进程堪称一个顺序IO设备。 在Qt中&#xff0c;QProcess类是用于启动外部进程的…

Vue的MVVM实现原理

目录 前言 用法 代码和效果图 效果图 理解 高质量的使用 前言 MVVM是Model-View-ViewModel的缩写&#xff0c;是一种软件架构设计模式。Vue.js实现了这种设计模式&#xff0c;通过双向数据绑定和虚拟DOM技术&#xff0c;使得数据和视图能够快速响应彼此的变化。了解Vue的…

unity中方向的两种表示:欧拉角和四元数

欧拉角&#xff1a;简单来说就是你可以选择 0度~360度 的范围 四元数&#xff1a;在计算机图像学中&#xff0c;四元数用于物体的旋转&#xff0c;是一种复杂&#xff0c;但效率较高的旋转方式 Quaternion结构体代表一个四元数&#xff0c;包含一个标量和一个三维向量&#x…

C# Onnx Yolov8 Detect 路面坑洼检测

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms;namespace Onnx…

leetcode 105. 从前序与中序遍历序列构造二叉树

2023.10.21 本题需要根据前序遍历序列和中序遍历序列来构造出一颗二叉树。类似于从中序与后序遍历序列构造二叉树 。使用递归&#xff0c; java代码如下&#xff1a; /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* …

Monocular arbitrary moving object discovery and segmentation 论文阅读

基本信息 题目&#xff1a;Monocular Arbitrary Moving Object Discovery and Segmentation 作者&#xff1a; 来源&#xff1a;BMVC 时间&#xff1a;2021 代码地址&#xff1a;https://github.com/michalneoral/Raptor Abstract 我们提出了一种发现和分割场景中独立移动的…

VSCode 自动格式化

1.打开应用商店&#xff0c;搜索 prettier code formatter &#xff0c;选择第一个&#xff0c;点击安装。 2.安装完成后&#xff0c;点击文件&#xff0c;选择首选项&#xff0c;选择设置。 3.在搜索框内输入 save &#xff0c;勾选在保存时格式化文件。 4.随便打开一个文件&a…

nginx配置负载均衡--实战项目(适用于轮询、加权轮询、ip_hash)

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

021-Qt 配置GitHub Copilot

Qt 配置GitHub Copilot 文章目录 Qt 配置GitHub Copilot项目介绍 GitHub Copilot配置 GitHub CopilotQt 前置条件升级QtGitHub Copilot 前置条件激活的了GitHub Copilot账号安装 Neovim 启用插件&#xff0c;重启Qt配置 GitHub Copilo安装Nodejs下载[copilot.vim](https://gith…

http post协议实现简单的rpc协议,WireShark抓包分析

文章目录 1.http 客户端-RPC客户端1.http 服务端-RPC服务端3.WireShark抓包分析3.1客户端到服务端的HTTP/JSON报文3.2服务端到客户端的HTTP/JSON报文 1.http 客户端-RPC客户端 import json import requests# 定义 RPC 客户端类 class RPCClient:def __init__(self, server_url…

基于多尺度分形残差注意力网络的超分辨率重建算法

1.引言 深度神经网络可以显著提高超分辨率的质量&#xff0c;但现有方法难以充分利用低分辨率尺度特征和通道信息&#xff0c;从而阻碍了卷积神经网络的表达能力。针对此类问题&#xff0c;本章提出了一种多尺度分形残差注意力网络&#xff08;Multi-scale Fractal Residual A…

Java NIO

Java NIO 一&#xff0c;介绍 Java NIO&#xff08;New IO&#xff09;是 JDK 1.4 引入的一组新的 I/O API&#xff0c;用于支持非阻塞式 I/O 操作。相比传统的 Java IO API&#xff0c;NIO 提供了更快、更灵活的 I/O 操作方式&#xff0c;可以用于构建高性能网络应用程序。 …