损失函数总结(三):BCELoss、CrossEntropyLoss

损失函数总结(三):BCELoss、CrossEntropyLoss

  • 1 引言
  • 2 损失函数
    • 2.1 BCELoss
    • 2.2 CrossEntropyLoss
  • 3 总结

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

2 损失函数

2.1 BCELoss

BCELoss(Binary Cross-Entropy Loss,二进制交叉熵损失)是一种用于二分类任务的损失函数,通常用于测量模型的二分类输出实际标签之间的差距。BCELoss的数学表达式如下:
L BCE ( y , y ′ ) = − 1 n ∑ i = 1 n [ y i log ⁡ ( y i ′ ) + ( 1 − y i ) log ⁡ ( 1 − y i ′ ) ] L_{\text{BCE}}(y, y') = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(y_i') + (1 - y_i) \log(1 - y_i')] LBCE(y,y)=n1i=1n[yilog(yi)+(1yi)log(1yi)]

其中:

  • L BCE ( y , y ′ ) L_{\text{BCE}}(y, y') LBCE(y,y) 是整个数据集上的二进制交叉熵损失
  • n n n 是样本数量。
  • y i y_i yi 是第 i i i 个样本的实际标签,通常是0或1(表示两个类别中的一个)。
  • y i ′ y_i' yi 是第 i i i 个样本的模型预测的概率,通常在0和1之间

代码实现(Pytorch):

m = nn.Sigmoid()
loss = nn.BCELoss()
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
output = loss(m(input), target)
output.backward()

BCELoss 常用于二分类任务,是二分类任务中常见的损失函数之一。二分类任务如:垃圾邮件检测(是垃圾邮件还是非垃圾邮件)或医学图像分类(是病态还是正常)

2.2 CrossEntropyLoss

CrossEntropyLoss(交叉熵损失)通常用于多类别分类任务,它是一种用于度量模型的类别概率分布实际类别分布之间的差距的损失函数。CrossEntropyLoss 的数学表达式如下:
L CE ( Y , Y ′ ) = − 1 n ∑ i = 1 n ∑ j = 1 C y i j log ⁡ ( y i j ′ ) L_{\text{CE}}(Y, Y') = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{C} y_{ij} \log(y_{ij}') LCE(Y,Y)=n1i=1nj=1Cyijlog(yij)

其中:

  • L CE ( Y , Y ′ ) L_{\text{CE}}(Y, Y') LCE(Y,Y) 是整个数据集上的交叉熵损失
  • n n n 是样本数量。
  • C C C 是类别数量。
  • y i j y_{ij} yij 是第 i i i 个样本的实际类别分布,通常是一个独热编码(one-hot encoding)向量,表示实际类别
  • y i j ′ y_{ij}' yij 是第 i i i 个样本的模型预测的类别概率分布,通常是一个概率向量,表示模型对每个类别的预测概率

代码实现(Pytorch):

# 带有类别索引的目标示例
loss = nn.CrossEntropyLoss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(input, target)
output.backward()
# 带有类别概率的目标示例
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5).softmax(dim=1)
output = loss(input, target)
output.backward()

CrossEntropyLoss 广泛用于多类别分类任务,例如图像分类(将图像分为多个不同的类别),自然语言处理(将文本分类到不同的类别),语音识别等领域。CrossEntropyLoss 损失函数是当前多分类任务的标准方法

3 总结

到此,使用 损失函数总结(三) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的损失函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/170060.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spark_SQL-DataFrame数据写出以及读写数据库(以MySQl为例)

一、数据写出 (1)SparkSQL统一API写出DataFrame数据 统一API写法: 常见源写出: # cording:utf8from pyspark.sql import SparkSession from pyspark.sql.types import StructType, IntegerType, StringType import pyspark.sql.fu…

vue3+vite在线预览pdf

效果图 代码 <template><div class"pdf-preview"><div class"pdf-wrap"><vue-pdf-embed :source"state.source" :style"scale" class"vue-pdf-embed" :page"state.pageNum" /></div…

VB.NET 三层登录系统实战:从设计到部署全流程详解

目录 前言&#xff1a; 什么是三层 为什么要用到三层: 饭店→软件 理解: 过程: 1.三层包图: 2.数据库 3.三层项目 4.用户界面 5.添加引用 代码实现: Entity层 BLL层 DAL层 UI层 总结: 前言&#xff1a; 什么是三层 三层就是把各个功能模块划分为表示层&#…

NetCore IIS Redis JMeter 登录压力测试

近期&#xff0c;由于某项目验收需要&#xff0c;需要登录接口同时满足至少400个账号同时并发登录&#xff0c;于是开始编写测试代码&#xff0c;以满足项目业务需要。首先&#xff0c;安装jdk&#xff0c;由于本机已安装jdk8&#xff1a; 如果你机器上没有安装jdk&#xff0c;…

.net 支付宝 应用网页验签

验证签名接口 /// <summary>/// 验证网关/// </summary>/// <returns></returns>[Route("gatewayVerify"), HttpPost, AllowAnonymous, NonUnify]public async Task<dynamic> gatewayVerify(){var Request App.HttpContext.Request;…

uni-app:实现picker下拉列表的默认值设置

效果 分析 1、在data中将index8的初始值设置为-1&#xff0c;表示未选择任何选项&#xff1a; index8: -1, //选择的下拉列表下标 2、在bindPickerChange8事件处理函数中添加条件判断。如果选择的值是-1&#xff0c;则将this.index8设置为"请输入"&#xff0c;否则将…

部署基于efk+logstash+kafka构建日志收集平台并对nginx日志进行分析

文章目录 1.1 安装zookeeper集群1.2 安装kafka集群1.3 部署filebeat服务1.4 部署logstash1.5 部署es和kibana服务1.6 配置kibana ui界面1.7 对nginx进行日志分析 Filebeat采集日志kafka topic存起来日志->logstash去kafka获取日志&#xff0c;进行格式转换->elasticsearc…

部分背包问题细节(贪心)

有一种情况是&#xff0c;背包可以把金币全部拿走&#xff1a; 如果num小于0则返回值

Python-pptx教程之一从零开始生成PPT文件

简介 python-pptx是一个用于创建、读取和更新PowerPoint&#xff08;.pptx&#xff09;文件的python库。 典型的用途是根据动态内容&#xff08;如数据库查询、分析数据等&#xff09;&#xff0c;将这些内容自动化生成PowerPoint演示文稿&#xff0c;将数据可视化&#xff0c…

京东(天猫)数据分析:2023下半年茶饮料市场高速增长,东方树叶一骑绝尘

当前在食品饮料行业中&#xff0c;整体的增长放缓&#xff0c;且各个细分品类上都已经充分竞争。但茶饮料市场例外&#xff0c;近两年呈现高增长的态势&#xff0c;一来取决于行业头部企业也在积极推动茶饮料不断升级&#xff0c;另外是主打更健康、更时尚的茶饮料深受年轻消费…

基于定容积法标准容器容积标定中的电动针阀自动化解决方案

摘要&#xff1a;在目前的六氟化硫气体精密计量中普遍采用重量法和定容法两种技术&#xff0c;本文分析了重量法中存在的问题以及定容法的优势&#xff0c;同时也指出定容法在实际应用中还存在自动化水平较低的问题。为了提高定容法精密计量过程中的自动化水平&#xff0c;本文…

Delphi : 在 SDK 管理器中添加其他 iOS 框架

在用Delphi开发IOS程序时&#xff0c;有时候需要添加其他的iOS框架&#xff0c;也就是说在默认的SDK中没有包含的iOS框架&#xff08;frameworks&#xff09;。 如果您希望利用 Delphi 提供支持之外的 iOS 框架&#xff0c;则需要在 SDK 管理器中添加框架的路径。 为此&#…

制造业中的微小缺陷检测——应用场景分析与算法选择(YoloV8/CANet)

一、缺陷检测任务 缺陷检测的任务通常可以分为三个主要阶段&#xff0c;包括缺陷分类、缺陷定位和缺陷分割。 1.缺陷分类 缺陷分类是检测过程的第一步&#xff0c;目的是将检测到的缺陷区域分类为不同的类别&#xff0c;通常是根据缺陷的性质或类型进行分类。分类的类别包括…

如何最有效地使用ChatGPT:提问技巧与策略

前言 在如今信息技术高速发展的时代&#xff0c;像ChatGPT这样的大型自然语言处理模型为我们提供了一个强大的工具&#xff0c;以获取各种信息和答案。然而&#xff0c;要充分利用这一工具&#xff0c;您需要掌握一些提问技巧与策略&#xff0c;以确保获得最准确和有用的回答。…

Kafka磁盘写满日志清理操作

最近项目组的kafka集群&#xff0c;老是由于应用端写入kafka topic的消息太多&#xff0c;导致所在的broker节点占满&#xff0c;导致其他的组件接连宕机。 这里和应用端沟通可以删除1天之前的消息来清理磁盘&#xff0c;并且可以调整topic的消息存活时间。 一、调整Topic的消…

通过怪物展示Demo理解游戏设计模式中的迭代器模式

点击上方亿元程序员关注和★星标 引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》&#xff0c;让糟糕的代码在潜移默化中升华&#xff0c;欢迎大家关注分享收藏订阅。 今天我们要来聊一聊游戏…

[SQL开发笔记]AND OR运算符复杂表达式开发实例

结合 AND & OR实例&#xff1a;通过圆括号使用and或or来组成复杂的表达式 目标数据库及表&#xff1a;使用 DRobot数据库&#xff0c;"T_Drobot" 表 假设我们需要查询"T_Drobot" 表&#xff0c;并从"T_Drobot"表中查询选取creator为 "…

基于C#使用winform技术的游戏平台的实现【C#课程设计】

基于C#使用winform技术的游戏平台的实现【C#课程设计】 说明项目结构项目运行截图及实现的功能 部分代码一些说明(个人觉得一些难点的说明)一、ListView &#xff0c;ImageList 的综合使用二、图片上传以及picturebox 图片的动态替换三、图表插件的使用四、SQL工具类封装五、高…

09-React路由使用(React Router 6)

9-React Router 6的使用 1.概述 React Router 以三个不同的包发布到 npm 上&#xff0c;它们分别为&#xff1a; react-router: 路由的核心库&#xff0c;提供了很多的&#xff1a;组件、钩子。react-router-dom: 包含react-router所有内容&#xff0c;并添加一些专门用于 DOM …

使用jdbc技术连接数据库

连接数据库 <dependencies><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version><scope>compile</scope></dependency> </dependencies> g…