TVRNet网络PyTorch实现

文章目录

    • 文章地址
    • 网络各层结构
    • 代码实现

文章地址

  • An End-to-End Traffic Visibility Regression Algorithm
  • 文章通过训练搜集得到的真实道路图像数据集(Actual Road dense image Dataset, ARD),通过专业的能见度计和多人标注,获得可靠的能见度标签数据集。构建网络,进行训练,获得了较好的能见度识别网络。网络包括特征提取​、多尺度映射​、特征融合​、非线性输出(回归范围为[0,1],需要经过(0,0),(1,1)改用修改的sigmoid函数,相较于ReLU更好)。结构如下​
    在这里插入图片描述

网络各层结构

在这里插入图片描述

  • 我认为红框位置与之相应的参数不匹配,在Feature Extraction部分Reshape之后得到的特征图大小为4124124。紧接着接了一个卷积层Conv,显示输入是3128128
  • 第二处红框,MaxPool的kernel设置为88,特征图没有进行padding,到全连接层的输入变为64117*117,参数不对应
    在这里插入图片描述

代码实现

"""Based on the ideas of the below paper, using PyTorch to build TVRNet.Reference: Qin H, Qin H. An end-to-end traffic visibility regression algorithm[J]. IEEE Access, 2021, 10: 25448-25454.​@weishuo
"""import torch
from torch import nn
import mathclass Inception(nn.Module):def __init__(self, in_planes, out_planes):super(Inception, self).__init__()self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, padding=0)self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=1)self.conv5 = nn.Conv2d(in_planes, out_planes, kernel_size=5, padding=2)self.conv7 = nn.Conv2d(in_planes, out_planes, kernel_size=7, padding=3)def forward(self, x):out_1 = self.conv1(x)out_3 = self.conv3(x)out_5 = self.conv5(x)out_7 = self.conv7(x)out = torch.cat((out_1, out_3, out_5, out_7), dim=1)return outdef modify_sigmoid(x):return 1 / (1 + torch.exp(-10*(x-0.5)))class TVRNet(nn.Module):def __init__(self, in_planes, out_planes):super(TVRNet, self).__init__()# (B, 3, 224, 224)  ——>  (B, 3, 220, 220)self.FeatureExtraction_onestep = nn.Sequential(nn.Conv2d(in_planes, 20, kernel_size=5, padding=0),nn.ReLU(inplace=True),)self.FeatureExtraction_maxpool = nn.MaxPool2d((5, 1))self.MultiScaleMapping = nn.Sequential(Inception(4, 16),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=8))self.FeatureIntegration = nn.Sequential(nn.Linear(46656, 100),nn.ReLU(inplace=True),nn.Dropout(0.4),nn.Linear(100, out_planes))self.NonLinearRegression = modify_sigmoiddef forward(self, x):x = self.FeatureExtraction_onestep(x)x = x.view((x.shape[0], 1, x.shape[1], -1))x = self.FeatureExtraction_maxpool(x)x = x.view(x.shape[0], x.shape[2], int(math.sqrt(x.shape[3])), int(math.sqrt(x.shape[3])))# print(x.shape)x = self.MultiScaleMapping(x)# print(x.shape)x = x.view(x.shape[0], -1)x = self.FeatureIntegration(x)out = self.NonLinearRegression(x)return outif __name__ == '__main__':a = torch.randn(1,3,224,224)net = TVRNet(3,3)b = net(a)print(b.shape)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/171387.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matter.js 插件:matter-wrap(世界是圆的)

本文简介 点赞 关注 收藏 学会了 记得以前看爆笑校园里有一集讲到,一个人对着前面开了一枪,过了一阵子弹打中他自己的后脑勺。作者想通过这个冷笑话告诉大家一件事:地球是圆的。 在 Matter.js 世界里,默认是没有边界的&#…

【Leetcode】【每日一题】【中等】1465. 切割后面积最大的蛋糕

力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/maximum-area-of-a-piece-of-cak…

模拟算法及其优化

第一题 替换所有问号 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 class Solution { public:string modifyString(string s) {string ret;for(int i0;i<s.size();i){if(i0){if(s[i]?&&i1<s.size()){for(char aa;a<z;a){if(a!s…

Codeforces Round 905 (Div. 3)ABCDEF

Codeforces Round 905 (Div. 3) 目录 A. Morning题意思路核心代码 B. Chemistry题意思路核心代码 C. Raspberries题意思路核心代码 D. In Love题意思路核心代码 E. Look Back题意思路核心代码 A. Morning 题意 从一开始&#xff0c;每一次操作可以选择当前的数字打印或者是移…

Jenkins入门级安装部署

前言 Jenkins是一个开源软件项目&#xff0c;是基于Java开发的一种持续集成工具&#xff0c;用于监控持续重复的工作&#xff0c;旨在提供一个开放易用的软件平台&#xff0c;使软件项目可以进行持续集成。通常&#xff0c;项目中常用Jenkins作为编译打包项目的工具&#xff0…

企业内部IM即时聊天软件WorkPlus,自主可控的信创即时通讯IM

随着国家的发展发展&#xff0c;很多技术因为一些原因越来越受制于人&#xff0c;尤其是上游核心技术。为了解决这个问题&#xff0c;我国明确了“数字中国”建设战略&#xff0c;强调“自主”、“安全”、“可控”&#xff0c;不被“卡脖子”。在信创产业链的各环节中&#xf…

使用pycharm远程调试

使用pycharm 专业版&#xff0c; 在设置解释器中&#xff0c;具备ssh 解释器功能&#xff1b; 一般在本地无法调试远程端代码&#xff0c;机械性的scp传输文件十分影响工作效率&#xff0c;PyCharm的Pro支持远程Run&#xff0c;Debug&#xff0c;等可视化的功能。 操作系统&…

shell的执行流控制

目录 1.for语句 2.条件语句 while...do语句 until...do 语句 if...then...elif...then...else...fi 语句 3.case语句 4.expect 5.break,continue,exit 1.for语句 作用&#xff1a;为循环执行动作 for语句结构 for //定义变量 do //使用变量&#xff0…

YOLOv7优化:感受野注意力卷积运算(RFAConv),效果秒杀CBAM和CA等 | 即插即用系列

💡💡💡本文改进:感受野注意力卷积运算(RFAConv),解决卷积块注意力模块(CBAM)和协调注意力模块(CA)只关注空间特征,不能完全解决卷积核参数共享的问题 提供多种卷积变体供使用:CBAMConv,CAMConv,CAConv,RFAConv,RFCAConv RFAConv | 亲测在多个数据集能够实现…

MedNeXt: Transformer-driven Scaling ofConvNets for Medical Image Segmentation

论文标题;MedNeXt: Transformer-driven Scaling of ConvNets for Medical Image Segmentation 论文链接&#xff1a;2303.09975.pdf (arxiv.org)https://arxiv.org/pdf/2303.09975.pdf 论文&#xff1a; MedNeXt&#xff1a;用于医学图像分割的转换器驱动的ConvNets缩放 项目…

gitlab查看、修改用户和邮箱,gitlab生成密钥

查看用户、邮箱 git config user.name git config user.email 修改用户、邮箱 git config --global user.name “xxx” git config --global user.email “xxxxxx.com” 生成ssh密钥 ssh-keygen -t rsa -C “xxxxxx.com” 查看SSH秘钥 cat ~/.ssh/id_rsa.pub 将秘钥复制&…

通过流量安全分析发现主机异常

主机异常分析在计算机系统中具有重要意义。以下是主机异常分析的几个关键点&#xff1a; 1、检测安全威胁&#xff1a;主机是计算机系统的核心组件&#xff0c;通过对主机异常进行分析&#xff0c;可以快速检测到潜在的安全威胁&#xff0c;如恶意软件、病毒感染、黑客入侵等。…

K8s概念汇总-笔记

目录 1.Master 1.1在Master上运⾏着以下关键进程 2.什么是Node? 1.2在每个Node上都运⾏着以下关键进程 3.什么是 Pod ? 4. 什么是Label &#xff1f; 5.Replication Controller 6.Deployment 6.1Deployment的典型场景&#xff1a; 7.Horizontal Pod Autoscaler TODO…

【Linux】开发工具

目录 Linux编译器-gcc/g使用执行命令&#xff1a;我们的.o和库是如何链接的? make/Makefile依赖关系、依赖方法 Linux编译器-gcc/g使用 gcc只能编译c语言&#xff0c;g可以编译c语言也可以编译g 背景知识&#xff1a; 预处理&#xff08;进行宏替换)编译&#xff08;生成汇编)…

泛微OA之获取每月固定日期

文章目录 1.需求及效果1.1需求1.2效果 2. 思路3. 实现 1.需求及效果 1.1需求 需要获取每个月的7号作为需发布日期&#xff0c;需要自动填充1.2效果 自动获取每个月的七号2. 思路 1.功能并不复杂&#xff0c;可以用泛微前端自带的插入代码块的功能来实现。 2.将这需要赋值的…

[推荐]Linux安装与配置虚拟机之虚拟机服务器坏境配置

&#x1f3ac; 艳艳耶✌️&#xff1a;个人主页 &#x1f525; 个人专栏 &#xff1a;《Spring与Mybatis集成整合》《Vue.js使用》 ⛺️ 越努力 &#xff0c;越幸运。 一.操作系统 1. 简介 操作系统&#xff08;perating System&#xff0c;简称OS&#xff09;是一种系统软件…

Maven配置阿里云中央仓库settings.xml

Maven配置阿里云settings.xml 前言一、阿里云settings.xml二、使用步骤1.任意目录创建settings.xml2.使用阿里云仓库 总结 前言 国内网络从maven中央仓库下载文件通常是比较慢的&#xff0c;所以建议配置阿里云代理镜像以提高jar包下载速度&#xff0c;IDEA中我们需要配置自己…

云安全—docker原理

0x00 前言 因为要学习docker相关的检测技术&#xff0c;所以需要对docker的原理进行基本的原因&#xff0c;不求彻底弄懂&#xff0c;但求懂点皮毛&#xff0c;如有不妥之处&#xff0c;还请斧正。 0x01 docker概述 docker起源 docker公司是在旧金山&#xff0c;由法裔美籍…

《实现领域驱动设计》

DDD入门 1.1 DDD是什么&#xff1f; DDD是一种软件开发方法 DDD将领域专家和开发人员聚集到一起&#xff0c;开发的软件能够反映出领域专家的思维模型。目标是&#xff1a;交付最具业务价值的软件。DDD关注业务战略&#xff1a;指引我们如何实现面向服务架构&#xff08;ser…

Unity报错:Microsoft Visual C# Compiler version

Unity报错:Microsoft Visual C# Compiler version 问题解决方案总结 问题 Microsoft Visual C# Compiler version 2.9.1.65535 (9d34608e) Copyright © Microsoft Corporation 切换版本或者使用老项目的时候可能会出现这个报错&#xff0c;这个报错就是项目设置的问题 …