基于鸡群算法的无人机航迹规划-附代码

基于鸡群算法的无人机航迹规划

文章目录

  • 基于鸡群算法的无人机航迹规划
    • 1.鸡群搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用鸡群算法来优化无人机航迹规划。

1.鸡群搜索算法

鸡群算法原理请参考:https://blog.csdn.net/u011835903/article/details/108295616

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得鸡群搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用鸡群算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述

从结果来看,鸡群算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/172346.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红队专题-从零开始VC++C/S远程控制软件RAT-MFC-远控介绍及界面编写

红队专题 招募六边形战士队员[1]远控介绍及界面编写1.远程控制软件演示及教程简要说明主程序可执行程序 服务端生成器主机上线服务端程序 和 服务文件管理CMD进程服务自启动主程序主对话框操作菜单列表框配置信息 多线程操作非模式对话框 2.环境:3.界面编程新建项目…

JavaScript_Pig Game切换当前玩家

const current0El document.getElementById(current--0); const current1El document.getElementById(current--1); if (dice ! 1) {currentScore dice;current0El.textContent currentScore;} else {} });这是我们上个文章写的代码,这个代码明显是有问题的&…

[量化投资-学习笔记003]Python+TDengine从零开始搭建量化分析平台-Grafana画K线图

在前面两个笔记: PythonTDengine从零开始搭建量化分析平台-数据存储 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 中有提到使用 Grafana 画图,不过画的都是均线。除了均线,Grafana 非常人性的提供了 K线图模块 搭配 TDeng…

VScode 调试 linux内核

VScode 调试 linux内核 这里调试的 linux 内核是通过 LinuxSD卡(rootfs)运行的内核 gdb 命令行调试 编辑 /home/tyustli/.gdbinit 文件,参考 【GDB】 .gdbinit 文件 set auto-load safe-path /home/tyustli/code/open_source/kernel/linux-6.5.7/.gdbinit在 lin…

Cross Site Scripting (XSS)

攻击者会给网站发送可疑的脚本,可以获取浏览器保存的网站cookie, session tokens, 或者其他敏感的信息,甚至可以重写HTML页面的内容。 背景 XSS漏洞有不同类型,最开始发现的是存储型XSS和反射型XSS,2005,Am…

Linux中shell脚本中的运算

目录 一、运算符号 二、运算指令 三、练习 一、运算符号 加法-减法*乘法/除法%除法后的余数**乘方自加一--自减一 <小于<小于等于>大于>大于等于等于ji&#xff0c;jji*jj*i/jj/i%jj%i 二、运算指令 (()) ##((a12)) let ##let a12 expr ##expr 1 2 …

【数据结构】交换排序

⭐ 作者&#xff1a;小胡_不糊涂 &#x1f331; 作者主页&#xff1a;小胡_不糊涂的个人主页 &#x1f4c0; 收录专栏&#xff1a;浅谈数据结构 &#x1f496; 持续更文&#xff0c;关注博主少走弯路&#xff0c;谢谢大家支持 &#x1f496; 冒泡、快速排序 1. 冒泡排序2. 快速…

城市群(Megalopolis)/城际(inter-city)OD相关研究即Open Access数据集调研

文章目录 1 城市群/城际OD定义2 理论模型与分析方法2.1 重力模型 Gravity Model2.2 干预机会模型 Intervening Opportunities Model2.3 辐射模型 Radiation Model 3 Issues related to OD flows3.1 OD Prediction3.2 OD Forecasting3.3 OD Construction3.4 OD Estimation 4 OD …

基于单片机的智能电子鼻的设计

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 技术交流认准下方 CSDN 官方提供的联系方式 文章目录 概要 一、智能电子鼻系统的设计方案1.1智能电子鼻系统的设计思路1.2智能电子鼻系统的设计流程图1.3智能电子鼻系统的硬件数…

source insight4菜单工具按钮变乱恢复

目录 1&#xff1a;问题现象2&#xff1a;修改方式2.1 找到config_all.xml2.2 修改config_all.xml 1&#xff1a;问题现象 在source insight4点击工具按钮的时候&#xff0c;把工具全部都折叠了&#xff0c;然后手动拉出来的时候就乱了。 2&#xff1a;修改方式 2.1 找到con…

【多线程面试题 三】、 run()和start()有什么区别?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a; run()和start()有什么区…

ffmpeg中examples编译报不兼容错误解决办法

ffmpeg中examples编译报不兼容错误解决办法 参考examples下的README可知&#xff0c;编译之前需要设置 PKG_CONFIG_PATH路径。 export PKG_CONFIG_PATH/home/user/work/ffmpeg/ffmpeg/_install_uclibc/lib/pkgconfig之后执行make出现如下错误&#xff1a; 基本都是由于库的版…

stm32的ADC采样率如何通过Time定时器进行控制

ADC采样率是个跟重要的概念. 手册上说可以通过Timer定时器进行触发ADC采样. 可我这边悲剧的是, 无论怎么样. ADC都会进行采样. 而且就算是TIM停掉也是一样会进行采样. 这就让我摸不着头脑了… 我想通过定时器动态更改ADC的采样频率. 结果不随我愿… 这到底是什么问题呢? 一…

哈希算法:如何防止数据库中的用户信息被脱库?

文章来源于极客时间前google工程师−王争专栏。 2011年CSDN“脱库”事件&#xff0c;CSDN网站被黑客攻击&#xff0c;超过600万用户的注册邮箱和密码明文被泄露&#xff0c;很多网友对CSDN明文保存用户密码行为产生了不满。如果你是CSDN的一名工程师&#xff0c;你会如何存储用…

uniapp实现webview页面关闭功能

实现思路&#xff1a; 1.关闭按钮是使用原生button添加的close属性。&#xff08;见page.json页面&#xff09; 2.监听关闭按钮的方法。&#xff08;onNavigationBarButtonTap&#xff09; 3.写实现关闭webview所有页面的逻辑。 废话不多说&#xff0c;直接上代码 1.page.…

【每日一题】合并两个有序数组

链接奉上&#xff1a;合并两个有序数组 目录 直接合并后排序&#xff1a;思路&#xff1a;代码实现&#xff1a; 双指针思路&#xff1a;代码实现&#xff1a; 直接合并后排序&#xff1a; 思路&#xff1a; 将nums2直接合并到nums1后边&#xff0c;并进行排序 代码实现&…

【多线程面试题 六】、 如何实现线程同步?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a; 如何实现线程同步&…

docker镜像仓库

Hlarbor harbor是一个开源的云原生镜像仓库&#xff0c; 它允许仓库用户存储&#xff0c;使用docker镜像。可以将harbor看做是私有的dockerhub&#xff0c;它提供了更新安全性和控制性&#xff0c; 让组织能够安全的存储和管理镜像。 harbor RBAC&#xff1a;基于角色访问控制…

html/css/javascript/js实现的简易打飞机游戏

源码下载地址 支持&#xff1a;远程部署/安装/调试、讲解、二次开发/修改/定制 视频浏览地址

ASP.NET WebApi 极简依赖注入

文章目录 环境服务类启动项注入使用依赖注入的优点 环境 .NET Core 7.0ASP.NET CoreVisual Studio 2022 服务类 public class T_TempService {public T_TempService(){}public void Test(){}}启动项注入 #region 依赖注入 builder.Services.AddTransient<T_TempService&g…