OpenCV官方教程中文版 —— 直方图的计算,绘制与分析

OpenCV官方教程中文版 —— 直方图的计算,绘制与分析

  • 前言
  • 一、原理
    • 1.统计直方图
    • 2. 绘制直方图
    • 3. 使用掩模

前言

使用 OpenCV 或 Numpy 函数计算直方图

使用 Opencv 或者 Matplotlib 函数绘制直方图

将要学习的函数有:cv2.calcHist(),np.histogram()

一、原理

什么是直方图呢?通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点的数目。

直方图其实就是对图像的另一种解释。一下图为例,通过直方图我们可以对图像的对比度,亮度,灰度分布等有一个直观的认识。几乎所有的图像处理软件都提供了直方图分析功能。下图来自Cambridge in Color website,强烈推荐你到这个网站了解更多知识。

在这里插入图片描述
让我们来一起看看这幅图片和它的直方图吧。(要记住,直方图是根据灰度图像绘制的,而不是彩色图像)。直方图的左边区域像是了暗一点的像素数量,右侧显示了亮一点的像素的数量。从这幅图上你可以看到灰暗的区域比两的区域要大,而处于中间部分的像素点很少。

1.统计直方图

现在我们知道什么是直方图了,那怎样获得一副图像的直方图呢?OpenCV 和 Numpy 都有内置函数做这件事。在使用这些函数之前我们有必要想了解一下直方图相关的术语。

BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到 255,你就需要 256 个数来显示上面的直方图。但是,如果你不需要知道每一个像素值的像素点数目的,而只希望知道两个像素值之间的像素点数目怎么办呢?举例来说,我们想知道像素值在 0 到 15 之间的像素点的数目,接着是 16 到 31,…,240 到 255。我们只需要 16 个值来绘制直方图。

那到底怎么做呢?你只需要把原来的 256 个值等分成 16 小组,取每组的总和。而这里的每一个小组就被成为 BIN。第一个例子中有 256 个 BIN,第二个例子中有 16 个 BIN。在 OpenCV 的文档中用 histSize 表示 BINS。

DIMS:表示我们收集数据的参数数目。在本例中,我们对收集到的数据只考虑一件事:灰度值。所以这里就是 1。

RANGE:就是要统计的灰度值范围,一般来说为 [0,256],也就是说所有的灰度值

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])
  1. images: 原图像(图像格式为 uint8 或 float32)。当传入函数时应该用中括号 [] 括起来,例如:[img]。
  2. channels: 同样需要用中括号括起来,它会告诉函数我们要统计那幅图像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。
  3. mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并使用它。(后边有例子)
  4. histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
  5. ranges: 像素值范围,通常为 [0,256]

让我们从一副简单图像开始吧。以灰度格式加载一幅图像并统计图像的直方图。

img = cv2.imread('home.jpg',0)
# 别忘了中括号 [img],[0],None,[256],[0,256],只有 mask 没有中括号
hist = cv2.calcHist([img],[0],None,[256],[0,256])

hist 是一个 256x1 的数组,每一个值代表了与次灰度值对应的像素点数目。

使用 Numpy 统计直方图 Numpy 中的函数 np.histogram() 也可以帮我们统计直方图。你也可以尝试一下下面的代码:

#img.ravel() 将图像转成一维数组,这里没有中括号。
hist,bins = np.histogram(img.ravel(),256,[0,256])

hist 与上面计算的一样。但是这里的 bins 是 256,因为 Numpy 计算bins 的方式为:0-0.99,1-1.99,2-2.99 等。所以最后一个范围是 255-255.99。为了表示它,所以在 bins 的结尾加上了 256。但是我们不需要 256,到 255就够了。

其他:Numpy还有一个函数 np.bincount(),它的运行速度是np.histgram 的十倍。所以对于一维直方图,我们最好使用这个函数。使用 np.bincount 时别忘了设置 minlength=256。 例如,hist=np.bincount(img.ravel(),minlength=256)

注意:OpenCV 的函数要比 np.histgram() 快 40 倍。所以坚持使用OpenCV 函数。

2. 绘制直方图

有两种方法来绘制直方图:

  1. Short Way(简单方法):使用 Matplotlib 中的绘图函数。
  2. Long Way(复杂方法):使用 OpenCV 绘图函数

使用 Matplotlib Matplotlib 中有直方图绘制函数:matplotlib.pyplot.hist()它可以直接统计并绘制直方图。

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
import numpy as np
A = cv2.imread('apple.png', 0)
plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(A, cmap='gray', interpolation='bicubic')  # expect true color
plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(1, 2, 2)
plt.hist(A.ravel(), 256, [0, 256])
plt.show()

你会得到下面这样一幅图:
在这里插入图片描述
或者你可以只使用 matplotlib 的绘图功能,这在同时绘制多通道(BGR)的直方图,很有用。但是你首先要告诉绘图函数你的直方图数据在哪里。运行一下下面的代码:

img = cv2.imread('apple.png')
color = ('b', 'g', 'r')
# 对一个列表或数组既要遍历索引又要遍历元素时
# 使用内置 enumerrate 函数会有更加直接,优美的做法
# enumerate 会将数组或列表组成一个索引序列。
# 使我们再获取索引和索引内容的时候更加方便
for i, col in enumerate(color):histr = cv2.calcHist([img], [i], None, [256], [0, 256])plt.plot(histr, color=col)plt.xlim([0, 256])
plt.show()

在这里插入图片描述

3. 使用掩模

要统计图像某个局部区域的直方图只需要构建一副掩模图像。将要统计的部分设置成白色,其余部分为黑色,就构成了一副掩模图像。然后把这个掩模图像传给函数就可以了。

img = cv2.imread('home.jpg',0)
# create a mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv2.bitwise_and(img,img,mask = mask)
# Calculate histogram with mask and without mask
# Check third argument for mask
hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask,'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0,256])
plt.show()

结果如下,其中蓝线是整幅图像的直方图,绿线是进行掩模之后的直方图。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/172581.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树:有了如此高效的散列表,为什么还需要二叉树?

文章来源于极客时间前google工程师−王争专栏。 上一节我们学习了树、二叉树以及二叉树的遍历,今天我们再来学习一种特殊的的二叉树,二叉查找树。二叉查找树最大的特点就是,支持动态数据集合的快速插入、删除、查找操作。 我们之前说过&…

StripedFly恶意软件框架感染了100万台Windows和Linux主机

导语 近日,一款名为StripedFly的恶意软件框架在网络安全研究人员的监视之外悄然感染了超过100万台Windows和Linux系统。这款跨平台的恶意软件平台在过去的五年中一直未被察觉。在去年,卡巴斯基实验室发现了这个恶意框架的真实本质,并发现其活…

设计高信度和效度的问卷:关键要点与技巧

设计调查问卷是任何研究过程中至关重要的一部分,无论是出于学术目的还是商业目的。调查是用于收集数据的常用工具,它们可以为消费者行为、意见、客户满意度和其他重要因素提供有价值的见解。然而,调查的可靠性和有效性对于确保收集的数据准确…

WireShark使用入门

背景 Wireshark,又被称为网络封包分析软件,是一种开源且功能十分强大的工具。该工具的主要功能是截取各种网络封包,并尽可能显示出最为详细的网络封包资料。它使用WinPCAP作为接口,直接与网卡进行数据报文交换。 Wireshark支持W…

SpringCloudAlibaba实战-nacos集群部署

写在前面:在学习阶段,我们想快速学习SpringCloudAlibaba功能,但总是花费大量时间跟着视频或博客做组件配置。由于版本的更迭,我们学习时的组件版本很可能和作者的不一致,又或者是各自环境不一,只能一坑又一…

【Python爬虫三天从0到1】Day1:爬虫核心

目录 1.HTTP协议与WEB开发 (1)简介 (2)请求协议和响应协议 2. requests&反爬破解 (1)UA反爬 (2)referer反爬 (3)cookie反爬 3.请求参数 &#x…

地面文物古迹保护方案,用科技为文物古迹撑起“智慧伞”

一、行业背景 当前,文物保护单位的安防系统现状存在各种管理弊端,安防系统没有统一的平台,系统功能不足、建设标准不同,产品和技术多样,导致各系统独立,无法联动,形成了“信息孤岛”。地面文物…

RabbitMQ-死信交换机和死信队列

1. 简介 1.1 DLX简介 DLX: Dead-Letter-Exchange 死信交换器,死信邮箱 当消息成为Dead message后,可以被重新发送到另一个交换机,这个交换机就是DLX。 如下图所示: 其实死信队列就是一个普通的交换机,有些队列的消息…

lesson2(补充)关于const成员函数

个人主页:Lei宝啊 愿所有美好如期而遇 前言: 将const 修饰的 “ 成员函数 ” 称之为 const 成员函数 , const 修饰类成员函数,实际修饰该成员函数 隐含的 this 指针 ,表明在该成员函数中不能对类的任何成员进行修改…

(a /b)*c的值

系列文章目录 进阶的卡莎C++_睡觉觉觉得的博客-CSDN博客数1的个数_睡觉觉觉得的博客-CSDN博客双精度浮点数的输入输出_睡觉觉觉得的博客-CSDN博客足球联赛积分_睡觉觉觉得的博客-CSDN博客大减价(一级)_睡觉觉觉得的博客-CSDN博客小写字母的判断_睡觉觉觉得的博客-CSDN博客纸币(…

基于华为云 IoT 物联网平台实现家居环境实时监控

01 智能家居环境监测 智能家居环境监测采用 Ruff 开发板作为主控,串口线连接温湿度传感器 DHT11 和空气质量传感器 SDS011,每5分钟采集一次数据,通过 MQTT 协议发送到华为云 IoT 物联网平台,并基于数据分析服务实时计算出整个家庭…

如何批量给视频添加logo水印?

如果你想为自己的视频添加图片水印,以增强视频的辨识度和个性化,那么你可以使用固乔剪辑助手软件来实现这一需求。下面就是详细的操作步骤: 1.下载并打开固乔剪辑助手软件,这是一款简单易用的视频剪辑软件,功能丰富&am…

el-table多选表格 实现默认选中 删除选中列表取消勾选等联动效果

实现效果如下&#xff1a; 代码如下&#xff1a; <template><div><el-tableref"multipleTable":data"tableData"tooltip-effect"dark"style"width: 100%"selection-change"handleSelectionChange"><…

哈希算法:哈希算法在分布式系统中有哪些应用?

文章来源于极客时间前google工程师−王争专栏。 哈希算法除了上篇的四个应用&#xff08;安全加密、数据校验、唯一标识、散列函数&#xff09;&#xff0c;还有三种应用&#xff1a;负载均衡、数据分片、分布式存储。 这三个应用都跟分布式系统有关。哈希算法是如何解决这些分…

【斗罗二】霍雨浩迷惑审查,戴华斌故意挑衅,惨败者屈服下跪

【侵权联系删除】【文/郑尔巴金】 深度爆料&#xff0c;自《绝世唐门》宣布问世以来&#xff0c;其在国漫圈引发的关注和热议便如火如荼。作为《斗罗大陆》的续作&#xff0c;这部作品无疑继承了前作的荣光&#xff0c;甚至被无数粉丝期待着能再创辉煌。在各大社交媒体和国漫论…

2021年06月 Python(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试&#xff08;1~6级&#xff09;全部真题・点这里 一、单选题&#xff08;共25题&#xff0c;每题2分&#xff0c;共50分&#xff09; 第1题 执行下列代码后&#xff0c;运行结果是&#xff1f; seq[hello,good,morning] s*.join(seq) print(s)A: hello*good*m…

LibreOffice编辑excel文档如何在单元格中输入手动换行符

用WPS编辑excel文档的时候&#xff0c;要在单元格中输入手动换行符&#xff0c;可以先按住Alt键&#xff0c;然后回车。 而用LibreOffice编辑excel文档&#xff0c;要在单元格中输入手动换行符&#xff0c;可以先按住Ctrl键&#xff0c;然后回车。例如&#xff1a;

软通动力:打造AI第二增长曲线,图谋新发展

【科技明说 &#xff5c; 重磅专题】 软通动力对于AI的想法还是比较久了&#xff0c;之前在与业内朋友聊到软通动力之时&#xff0c;曾提到软通动力的根基还是在于其多年来的软件服务能力&#xff0c;目前借助AI技术创新的机遇将软件服务能力进一步放大&#xff0c;扩展到更多行…

uni-app小程序,uview-ui组件样式无法穿透修改的解决办法

1.首先设置以下选项.该选项的作用是让微信小程序允许样式穿透. 在需要改动的文件内加上 options: { styleIsolation: shared } 2.然后再使用vue的样式穿透写法. ::v-deep .类样式{} 或者 /deep/ .类样式{}