吴恩达《机器学习》2-5->2-7:梯度下降算法与理解

一、梯度下降算法

梯度下降算法的目标是通过反复迭代来更新模型参数,以便最小化代价函数。代价函数通常用于衡量模型的性能,我们希望找到使代价函数最小的参数值。这个过程通常分为以下几个步骤:

  1. 初始化参数: 随机或设定初始参数的数值,如 𝜃0, 𝜃1, ..., 𝜃𝑛。

  2. 计算代价函数的梯度: 对于每个参数 𝜃𝑗,计算代价函数 J(𝜃0, 𝜃1, ..., 𝜃𝑛) 对该参数的偏导数,即梯度,表示为 ∂J/∂𝜃𝑗。

  3. 更新参数: 使用梯度信息来更新参数,根据以下规则更新每个参数 𝜃𝑗

    𝜃𝑗 := 𝜃𝑗 - 𝛼 * ∂J/∂𝜃𝑗
    其中,𝛼是学习率(learning rate),它决定了每次参数更新的步长。
  4. 重复迭代: 重复步骤2和步骤3,直到满足停止条件,如达到最大迭代次数或梯度足够小。

二、批量梯度下降

批量梯度下降(Batch Gradient Descent)是一种梯度下降的变体,其中在每一次参数更新时,使用整个训练数据集的信息。更新规则如下:

Repeat {𝜃𝑗 := 𝜃𝑗 - 𝛼 * (1/𝑚) * ∑ (ℎ𝜃(𝑥(𝑖)) - 𝑦(𝑖)) * 𝑥(𝑖) for 𝑖 = 1 to 𝑚
}
这表示在每一次迭代中,我们计算所有训练样本的梯度,然后对所有参数进行同时更新。

三、学习率的选择

学习率 𝛼 是一个重要的超参数,它控制了参数更新的速度。如果 𝛼 太小,模型会收敛得很慢,需要更多的迭代次数才能达到最小值。如果 𝛼 太大,可能会导致无法收敛,甚至发散。

在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。所以实际上没有必要再另外减小𝑎。

四、局部最小值

梯度下降通常会找到一个局部最小值,因为它不会尝试所有可能的参数组合。选择不同的初始参数组合可能导致不同的局部最小值。全局最小值通常很难找到,特别是对于复杂的代价函数。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174168.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

不定长顺序表3

六.判空函数 刚刚忘记参数判断了 七.查找函数——在顺序表PS中 查找第一个key值,找到返回key值的下标,没有找到返回-1 不管能否扩容,查找都是在有效数据内部查找,所以可以把定长顺序表的查找Search函数搬过来 测试也跟定长的一样…

MyBatis-Plus 实战教程三 拓展插件

文章目录 扩展功能代码生成安装插件使用 静态工具逻辑删除通用枚举定义枚举配置枚举处理器测试 JSON类型处理器定义实体使用类型处理器 仓库地址 扩展功能 代码生成 在使用MybatisPlus以后,基础的Mapper、Service、PO代码相对固定,重复编写也比较麻烦。…

openpnp - src - 配置文件载入过程的初步分析

文章目录 openpnp - src - 配置文件载入过程的初步分析概述笔记自己编译用的git版本报错截图问题1 - 怎么在调试状态下, 定位到抛异常的第一现场?结合单步调试找到的现场, 来分析报错的原因openpnp配置文件读取的流程END openpnp - src - 配置文件载入过程的初步分析 概述 从…

工厂模式(Factory)

简单工厂模式 简单工厂模式又叫静态工厂模式,顾名思义,它是用来实例化目标类的静态类。下面我主要通过一个简单的实例说明简单工厂及其优点。 工厂方法模式 工厂方法模式和简单工厂模式在结构上的不同是很明显的。工厂方法模式的核心是一个抽象工厂类…

npm : 无法将“npm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。

1 bug描述 使用vscode执行npm run dev指令时出现 “npm : 无法将“npm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次 “ 的错误提示,原因是系统里没有安装n…

【机器学习】loss损失讨论

大纲 验证集loss上升,准确率也上升(即将overfitting?)训练集loss一定为要为0吗 Q1. 验证集loss上升,准确率也上升 随着置信度的增加,一小部分点的预测结果是错误的(log lik 给出了指数级的惩…

微信小程序设计之页面文件pages

一、新建一个项目 首先,下载微信小程序开发工具,具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后,注册小程序账号,具体注册方法,可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…

C++笔记-RTTR编译安装简单使用

这里以Linux为例,我使用的机器的gcc版本是4.9.2 使用的RTTR的版本是0.9.5 编译&安装 首先在官网将rttr的0.9.5版本下载下来。 Home |RTTR 按照官方的安装流程: 但这里可能会出现一个问题: 按照解答,切换成root用户&#x…

【设计模式】第13节:结构型模式之“享元模式”

一、简介 所谓“享元”,顾名思义就是被共享的单元。享元模式的意图是复用对象,节省内存,前提是享元对象是不可变对象。 实现:通过工厂模式,在工厂类中,通过一个Map或者List来缓存已经创建好的享元对象&am…

文件夹比较工具怎么用 对比两个文件夹找出多余的文件

在日常工作中,经常会接触到大量的文件,长时间堆积,文件夹会越来越多,从而导致文件重复,如果想要找出想要的文件会比较麻烦,那么你知道应该怎么来查找吗?下面就让我们来学习一下文件夹比较工具怎…

香港服务器运行不正常原因简析

​  网站在线业务的部署需要服务器的存在。于我们而言,租用正规服务商(正规机房)的服务器,一般情况下是会很少出现问题。但,要知道,再稳定的服务器也有出现问题的时候,香港服务器也不例外,而且恰恰这个原…

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制) 目录 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matla…

C语言基础简述(一)

目录 1. 标准输入输出库 2. 定义变量 3. 关于基本数据类型 3.1 计算机如何存储数据 3.2 基本数据类型 3.2.1 数值类型 3.2.1.1 整数类型 3.2.1.2 浮点数类型 3.2.2 字符类型 3.2.2.1 ASCII表 4. 进制数之间的转换 4.1 十进制整数和二进制之间的相互转换 5. C语言运…

椭圆曲线在SM2加解密中的应用(三)

一、SM2加密运算 1.1加密原始数据 SM2加密运算首先是用户A对数据加密,用户A拥有原始数据 椭圆曲线系统参数长度为klen比特的消息M公钥Pb 椭圆曲线系统参数,已经在 椭圆曲线参数(二)中详细介绍;M就是需要加密消息&am…

Ajax学习笔记第三天

做决定之前仔细考虑,一旦作了决定就要勇往直前、坚持到底! 【1 ikunGG邮箱注册】 整个流程展示: 1.文件目录 2.页面效果展示及代码 mysql数据库中的初始表 2.1 主页 09.html:里面代码部分解释 display: inline-block; 让块元素h1变成行内…

前端移动web高级详细解析三

模拟移动设备,方便查看页面效果 屏幕分辨率 分类: 物理分辨率:硬件分辨率(出厂设置) 逻辑分辨率:软件 / 驱动设置 结论:制作网页参考 逻辑分辨率 视口 作用:显示 HTML 网页的区…

winodos下使用VS2022编译eclipse-paho.mqtt.c并演示简单使用的 demo

本文演示C语言如何使用eclipse-paho.mqtt.c库,包含自行编译库的步骤或者下载编译好的文件。 1.下载paho.mqtt.c库源码(zip 文件) 到官网选择C版本的paho源码进行下载 Eclipse Paho | The Eclipse Foundation 或者到下述连接下载 Releases ec…

SpringBoot面试题8:运行 Spring Boot 有哪几种方式?Spring Boot 需要独立的容器运行吗?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:运行 Spring Boot 有哪几种方式? 运行Spring Boot应用有多种方式,具体取决于你的需求和环境。以下是几种常见的运行Spring Boot应用的方式: 使…

论文阅读——GPT3

来自论文:Language Models are Few-Shot Learners Arxiv:https://arxiv.org/abs/2005.14165v2 记录下一些概念等。,没有太多细节。 预训练LM尽管任务无关,但是要达到好的效果仍然需要在特定数据集或任务上微调。因此需要消除这个…

Java毕业设计 SpringBoot 新能源充电桩管理系统

Java毕业设计 SpringBoot 新能源充电桩管理系统 SpringBoot 新能源充电桩管理系统 功能介绍 管理员 登录 验证码 注册 系统用户管理 普通用户管理 通知公告管理 留言管理 充电站管理 充电桩管理 充电桩预约 充电管理 订单管理 修改密码 普通用户 登录 修改个人资料 通知公告…