分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)

目录

    • 分类预测 | Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现KOA-CNN-GRU-selfAttention开普勒算法优化卷积门控循环单元融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上;
2.基于开普勒算法(KOA)优化卷积门控循环单元(CNN-GRU)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复Matlab实现KOA-CNN-GRU-selfAttention多特征分类预测(自注意力机制)
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174153.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言基础简述(一)

目录 1. 标准输入输出库 2. 定义变量 3. 关于基本数据类型 3.1 计算机如何存储数据 3.2 基本数据类型 3.2.1 数值类型 3.2.1.1 整数类型 3.2.1.2 浮点数类型 3.2.2 字符类型 3.2.2.1 ASCII表 4. 进制数之间的转换 4.1 十进制整数和二进制之间的相互转换 5. C语言运…

椭圆曲线在SM2加解密中的应用(三)

一、SM2加密运算 1.1加密原始数据 SM2加密运算首先是用户A对数据加密&#xff0c;用户A拥有原始数据 椭圆曲线系统参数长度为klen比特的消息M公钥Pb 椭圆曲线系统参数&#xff0c;已经在 椭圆曲线参数&#xff08;二&#xff09;中详细介绍&#xff1b;M就是需要加密消息&am…

Ajax学习笔记第三天

做决定之前仔细考虑&#xff0c;一旦作了决定就要勇往直前、坚持到底&#xff01; 【1 ikunGG邮箱注册】 整个流程展示&#xff1a; 1.文件目录 2.页面效果展示及代码 mysql数据库中的初始表 2.1 主页 09.html:里面代码部分解释 display: inline-block; 让块元素h1变成行内…

前端移动web高级详细解析三

模拟移动设备&#xff0c;方便查看页面效果 屏幕分辨率 分类&#xff1a; 物理分辨率&#xff1a;硬件分辨率&#xff08;出厂设置&#xff09; 逻辑分辨率&#xff1a;软件 / 驱动设置 结论&#xff1a;制作网页参考 逻辑分辨率 视口 作用&#xff1a;显示 HTML 网页的区…

winodos下使用VS2022编译eclipse-paho.mqtt.c并演示简单使用的 demo

本文演示C语言如何使用eclipse-paho.mqtt.c库&#xff0c;包含自行编译库的步骤或者下载编译好的文件。 1.下载paho.mqtt.c库源码&#xff08;zip 文件&#xff09; 到官网选择C版本的paho源码进行下载 Eclipse Paho | The Eclipse Foundation 或者到下述连接下载 Releases ec…

SpringBoot面试题8:运行 Spring Boot 有哪几种方式?Spring Boot 需要独立的容器运行吗?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:运行 Spring Boot 有哪几种方式? 运行Spring Boot应用有多种方式,具体取决于你的需求和环境。以下是几种常见的运行Spring Boot应用的方式: 使…

论文阅读——GPT3

来自论文&#xff1a;Language Models are Few-Shot Learners Arxiv&#xff1a;https://arxiv.org/abs/2005.14165v2 记录下一些概念等。&#xff0c;没有太多细节。 预训练LM尽管任务无关&#xff0c;但是要达到好的效果仍然需要在特定数据集或任务上微调。因此需要消除这个…

Java毕业设计 SpringBoot 新能源充电桩管理系统

Java毕业设计 SpringBoot 新能源充电桩管理系统 SpringBoot 新能源充电桩管理系统 功能介绍 管理员 登录 验证码 注册 系统用户管理 普通用户管理 通知公告管理 留言管理 充电站管理 充电桩管理 充电桩预约 充电管理 订单管理 修改密码 普通用户 登录 修改个人资料 通知公告…

【洛谷算法题】P5709-Apples Prologue / 苹果和虫子【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5709-Apples Prologue / 苹果和虫子【入门2分支结构】&#x1f30f;题目描述&am…

解决MySQL大版本升级导致.Net(C#)程序连接报错问题

数据库版本从MySQL 5.7.21 升级到 MySQL8.0.21 数据升级完成后&#xff0c;直接修改程序的数据库连接配置信息 <connectionStrings> <add name"myConnectionString" connectionString"server192.168.31.200;uidapp;pwdFgTDkn0q!75;databasemail;&q…

C#,数值计算——分类与推理Svmlinkernel的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public class Svmlinkernel : Svmgenkernel { public int n { get; set; } public double[] mu { get; set; } public Svmlinkernel(double[,] ddata, double[] yy) : base(yy, ddata) …

高级工技能等级认定---网络设备安全

目录 一、DHCP 安全配置 二、SSH配置 三、标准ACL的配置 四、配置交换机端口安全 五、三层交换和ACL的配置 一、DHCP 安全配置 配置要求&#xff1a; 1.给交换机配置enable密码. 2.在交换机上创建VLAN 100&#xff0c;将F0/1-3口改为Access口&#xff0c;并加入到VLAN …

Spring Cloud Alibaba 教程 Fegin 篇

Spring Cloud Alibaba 教程 | Feign 篇 写在前面的话&#xff1a; 本笔记在参考网上视频以及博客的基础上&#xff0c;只作为个人学习笔记&#xff0c;如有侵权联系删除&#xff0c;谢谢&#xff01; 1、Feign替代RestTemplate ​ 1.1 引入依赖 <!-- Feign 客户端依赖 --&…

社恐了怎么办?如何改变社交恐惧症?

社恐这个词已经算是普及了&#xff0c;自嘲自己是社恐的人真的挺多的&#xff0c;好像一句我社恐了就能解析很多问题&#xff0c;其实真正的社恐远比我们想象的要痛苦多了&#xff0c;社恐能被更多人认识到本来是件好事&#xff0c;但是过于的用社恐来给自己贴标签&#xff0c;…

设计模式(单例模式、工厂模式及适配器模式、装饰器模式)

目录 0 、设计模式简介 一、单例模式 二、工厂模式 三、适配器模式 四、装饰器模式 0 、设计模式简介 设计模式可以分为以下三种: 创建型模式&#xff1a;用来描述 “如何创建对象”&#xff0c;它的主要特点是 “将对象的创建和使用分离”。包括单例、原型、工厂方法、…

小程序request请求封装

以上为本人的项目目录 1.首先在utils中创建request.js文件封装request请求&#xff0c;此封装带上了token&#xff0c;每次请求都会自带token&#xff0c;需要你从后端获取后利用wx.setStorageSync(token,返回的token),不使用的话就是空。 直接复制即可&#xff0c;需要改一下…

C++STL---Vector、List所要掌握的基本知识

绪论​ 拼着一切代价&#xff0c;奔你的前程。 ——巴尔扎克&#xff1b;本章主要围绕vector和list的使用&#xff0c;以及容器底层迭代器失效问题&#xff0c;同时会有对原码的分析和模拟实现其底层类函数。​​​​话不多说安全带系好&#xff0c;发车啦&#xff08;建议电脑…

c#使用ExifLib库提取图像的相机型号、光圈、快门、iso、曝光时间、焦距信息等EXIF信息

近期公司组织了书画摄影比赛&#xff0c;本人作为摄影爱好者&#xff0c;平时也会拍些照片&#xff0c;这次比赛当然不能错过。为了提高获奖概率&#xff0c;选了19张图像作为参赛作品。但是&#xff0c;摄影作品要提交图像的光圈、曝光时间等参数。一两张还可以通过电脑自带软…

【uniapp】仿微信支付界面

效果图 完整代码 <template><view class="my-pay-page"><view :style=

软件测试---边界值分析(功能测试)

选取正好等于、刚好大于、刚好小于边界的值作为测试数据 上点: 边界上的点 (正好等于)&#xff1b;必选(不考虑区开闭) 内点: 范围内的点 (区间范围内的数据)&#xff1b;必选(建议选择中间范围) 离点: 距离上点最近的点 (刚好大于、刚好小于)&#xff1b;开内闭外(考虑开…