什么是 CNN? 卷积神经网络? 怎么用 CNN 进行分类?(1)

先看卷积是啥,url: https://www.bilibili.com/video/BV1JX4y1K7Dr/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

下面这个式子就是卷积
在这里插入图片描述
看完了,感觉似懂非懂

下一个参考视频:https://www.youtube.com/watch?v=E5Z7FQp7AQQ&list=PLuhqtP7jdD8CD6rOWy20INGM44kULvrHu

视频1:简单介绍卷积神经网络的意义,以及它的大概原理

先讲一个简单神经网络在图像识别领域里缺点

在这里插入图片描述
如上图,一个 100 * 1000 的 RGB 图像,这里一共需要 1000 * 1000 * 3 = 三百万 个输入神经元

随后,它的第一个隐藏层包含 1000 个神经元。这样来看,输入层和第一个隐藏层之间的边(连接)一共有 三百万 * 1000 = 三十亿

这是一个非常大的数字,如果我们要去训练这样的一个 权重矩阵,将会耗费巨大的时间

此外,过量的参数和过大的权重矩阵通常也意味着 过拟合

这就是为什么需要卷积神经网络,它在图像识别和视频识别领域要远强于简单的神经网络

卷积神经网络的思想如下:
使用 filters(滑动窗口) 去提取图像中的特征。
图像有一个特性,就是它会有边、形状、颜色。
CNN 的 filters 的任务就是检测图像里的上述特征,如下图

在这里插入图片描述

上图使用两个filter 去提取图像特征,分别是提取水平边 和 垂直边。filter(滑动窗口)的大小仅仅为 3* 3 = 9 像素

卷积神经网络中的 单层神经元 会使用大量这样的 filters

这些 filters 可能会检测我们图像里的边,随后这些边传给 更深的隐藏层,这些隐藏层可能会检测出 人脸的局部特征。、

再更深层的神经网络则可能会检测出整张人脸。接着这些人脸特征可以和一个 label “人类” 联系起来,从而帮助我们检测到人类。

这里减少的开销:三十亿参数 -> 很少的参数 增加的开销:sliding window

视频2:CNN 中的卷积操作到底是什么?

在这里插入图片描述
如上图,卷积其实就是拿一个 3*3 的矩阵去乘以图像矩阵,具体请看视频 3:35

在这里插入图片描述
为什么卷积操作能够提取图像特征?如图所示,棕色的卷积矩阵可以提取灰度图中的 垂直边,具体请看 5:05

在这里插入图片描述
相应的,提取垂直边的是上面的卷积矩阵,提取水平边的是下面的卷积矩阵 (或者叫做 filter)

在这里插入图片描述
遇到 RGB 图怎么办呢?简单,我们也用一个 乘以3 的 filter (也就是一共 27 个值) 去做卷积,随后产出一个特征图

在这里插入图片描述

我们用多少个 filter 就会产出多少个 特征图。

这里提示一下,filter 里的值实际上就是 卷积神经网络 里的 参数,它们通常由训练得来。

视频3:卷积神经网络中的 padding ,为什么需要 padding?

之前介绍的 CNN 有两个限制。

限制1:经过卷积操作后,图像会变小,也就说经过了很多层卷积后,图像可能变得非常小,丢掉很多信息。如下图

在这里插入图片描述
限制2:角落的像素没有收到足够多的关注。如下图。
在这里插入图片描述
左上角的 pixel 在做卷积操作的时候只会参与一次,而中心的 pixel 则会参与多次

解决方案就是给图像加上 padding,我们可以加一层 padding,也可以加两层三层,下图展示加一层 padding 的情形

在这里插入图片描述
从上图可以看到,加了 padding 之后,产出的图像是 6*6,尺寸和原图一样

此外,左上角的 pixel 也参与了多次卷积操作

在这里插入图片描述
如上图,一般来说,卷积操作有两种选择:

  1. Valid 。不使用任何 padding
  2. Same。卷积后产出的特征图,尺寸和原图一样。

一般而言,filter滑动窗口的边长会使用奇数,否则,padding 需要使用非对称 padding

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174233.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【设计模式】第20节:行为型模式之“备忘录模式”

一、简介 备忘录模式也叫快照模式,具体来说,就是在不违背封装原则的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便之后恢复对象为先前的状态。这个模式的定义表达了两部分内容:一部分是…

智慧公厕:打造城市卫生环境提升与革新的新利器

智慧公厕是一种结合先进科技和公共厕所管理的新型智慧管理系统,其主要功能是为市民提供更加便捷、舒适、卫生的厕所使用体验,为管理单位提供一种信息化、数字化、智慧化的管理方式,是城市管理的一个重要领域。 在现代都市生活中,…

Centos7 安装和配置 Redis 5 教程

在Centos上安装Redis 5,如果是 Centos8,那么 yum 仓库中默认的 redis 版本就是 5,直接 yum install 即可。但如果是 Centos7,yum 仓库中默认的 redis 版本是 3 系列,比较老: 通过 yum list | grep redis 命…

2023/10/29总结

总结 踩坑记录 写代码的时候遇到了一个错误大概是这样的 io.jsonwebtoken.security.WeakKeyException: The signing keys size is 48 bits which is not secure enough for the HS256 algorithm. The JWT JWA Specification (RFC 7518, Section 3.2) states that keys used…

Java I/O (输入/输出)

1.流的概念 流是一种有序的数据序列,根据操作类型,可以分为输入流和输出流两种。I/O流(输入输出)提供了一条通道程序,可以使用这条通道把源中的字节序列送到目的地。 1.1 输入流: 程序从指向源的输入流中读…

【Overload游戏引擎细节分析】standard材质Shader

提示:Shader属于GPU编程,难写难调试,阅读本文需有一定的OpenGL基础,可以写简单的Shader,不适合不会OpenGL的朋友 一、Blinn-Phong光照模型 Blinn-Phong光照模型,又称为Blinn-phong反射模型(Bli…

【C++项目】高并发内存池项目第八讲 项目总结和面试问题分享

项目总结面试分享 1.项目总结1.1优点1.2不足1.3面试常见问题 2.面试分享项目部分C语法部分 项目源代码:高并发内存池 1.项目总结 1.1优点 增加动态申请的效率减少陷入内核的次数减少系统内存碎片提升内存使用率尽量减少锁竞争应用于多核多线程场景 1.2不足 当前…

视频增强修复软件Topaz Video AI mac中文版支持功能

Topaz Video AI mac是一款使用人工智能技术对视频进行增强和修复的软件。它可以自动降噪、去除锐化、减少压缩失真、提高清晰度等等。Topaz Video AI可以处理各种类型的视频,包括低分辨率视频、老旧影片、手机录制的视频等等。 使用Topaz Video AI非常简单&#xff…

Lua脚本语言

1. 概念 Lua(发音为"loo-ah",葡萄牙语中的"lua"意为月亮)是一种轻量级的、高效的、可嵌入的脚本编程语言。官网Lua最初由巴西计算机科学家Roberto Ierusalimschy、Waldemar Celes和Luiz Henrique de Figueiredo于1993年开…

MySQL(2):环境搭建

1.软件下载 软装去官网下载(社区版):https://downloads.mysql.com/archives/installer/(历史版本可选) 选择下面的,一步到位 2.软件安装 双击 .msi 文件 选完 Custom 自定义后点 next 按 1&#xff0c…

Spring本地jar包依赖项目改为maven依赖

1.简介 我们在做项目的时候,可能会偶尔接手较为古老的项目,这些项目使用了较为老旧的版本管理或依赖管理方法,对于新开发项目来说,这些老旧的依赖管理方式会影响开发效率,所以,一般我们会选择将老项目的依…

asp.net旅游交流管理信息系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 旅游交流管理信息系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c# 语言开发 asp.net旅游交流网站1 应用技…

Gateway服务网关

本篇资料:https://gitee.com/Allengan/cloud-demo.githttps://gitee.com/Allengan/cloud-demo.git 目录 1.为什么需要网关 2.gateway快速入门 1)创建gateway服务,引入依赖 2)编写启动类 3)编写基础配置和路由规则…

【JVM】字节码文件的组成部分

🐌个人主页: 🐌 叶落闲庭 💨我的专栏:💨 c语言 数据结构 javaEE 操作系统 Redis 石可破也,而不可夺坚;丹可磨也,而不可夺赤。 JVM 一、字节码文件的组成部分1.1 iconst_0…

Affinity Photo 2.2.1 高端专业Mac PS修图软件

Affinity Photo Mac中文版是一款面向专业摄影师和其他视觉艺术家的专业图像处理软件,拥有众多专业高端功能,如Raw处理、PSD导入和导出、16位通道的编辑和ICC色彩管理以及兼容大量图片格式。是现在最快、最顺、最精准的专业修图软件。Affinity Photo Mac是…

【3妹教我学历史-秦朝史】1 秦朝初期

插: 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 坚持不懈,越努力越幸运,大家一起学习鸭~~~ 2哥 :3妹,在干嘛呢 3妹:读书呢…

框架安全-CVE 复现SpringStrutsLaravelThinkPHP漏洞复现

目录 服务攻防-框架安全&CVE 复现&Spring&Struts&Laravel&ThinkPHP概述PHP-开发框架安全-Thinkphp&Laravel漏洞复现Thinkphp-3.X RCEThinkphp-5.X RCELaravel框架安全问题- CVE-2021-3129 RCE JAVAWEB-开发框架安全-Spring&Struts2Struts2框架安全…

基于闪电搜索算法的无人机航迹规划-附代码

基于闪电搜索算法的无人机航迹规划 文章目录 基于闪电搜索算法的无人机航迹规划1.闪电搜索搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用闪电搜索算法来优化无人机航迹规划。 …

使用requests库进行HTTP爬虫编程

目录 一、安装requests库 二、发送HTTP请求 三、解析HTML页面 四、处理HTTP响应和异常 五、使用代理和会话管理 六、使用多线程或多进程提高效率 七、数据存储和处理 八、注意事项和总结 在当今的数字化世界中,数据已经成为了一种宝贵的资源。而网络爬虫程序…

【每日一题】59. 螺旋矩阵 II

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2: 输入:n 1 输出&…