Pytorch L1,L2正则化

L1正则化和L2正则化是常用的正则化技术,用于在机器学习模型中控制过拟合。它们的主要区别在于正则化项的形式和对模型参数的影响。

L1正则化(Lasso正则化):

  • 正则化项形式:L1正则化使用模型参数的绝对值之和作为正则化项,即L1范数。
  • 影响模型参数:L1正则化倾向于将一些模型参数压缩为0,从而实现特征选择和稀疏性。因此,它可以用于特征选择和模型简化。
  • 其他特点:由于L1正则化的非光滑性,优化问题在参数接近零时更容易找到解,因此它对于具有大量无关特征的问题更有效。

L2正则化(Ridge正则化):

  • 正则化项形式:L2正则化使用模型参数的平方和作为正则化项,即L2范数。
  • 影响模型参数:L2正则化倾向于使模型参数趋向于较小的值,但不会将其完全压缩为零。它通过减小模型参数的绝对值来控制参数的大小。
  • 其他特点:L2正则化是光滑的,优化问题在参数接近零时相对平滑,因此对于许多问题都能得到较好的结果。

总结:

  • L1正则化倾向于稀疏性和特征选择,适用于具有大量无关特征的问题。
  • L2正则化倾向于模型参数较小,适用于控制模型复杂度和减少过拟合。
  • 在某些情况下,可以同时使用L1和L2正则化形成弹性网络(Elastic Net),综合了两者的优点。

选择使用L1正则化还是L2正则化取决于具体问题和数据集的特点。通常建议先尝试L2正则化,如果模型仍然过拟合或需要进行特征选择,则可以考虑使用L1正则化。

对L1产生稀疏权值和L2产生平滑权值的理解

L1的定义是L1 = |w1| + |w2| + |w3| + ... + |wn|

L2的定义是L2 = w1^2 + w2^2 + w3^2 + ... + wn^2

L1和L2分别对w求导可得

dL1/dw = sign(wi)

dL2/dw = wi

假设wi为某个大于零的浮点数,学习率lr为0.5,根据梯度下降算法,

L1的权值更新方式为wi = wi - lr*(dL1/dw) = wi - lr*1 = wi - 0.5

L2的权值更新方式为wi = wi - lr*(dL2/dw) = wi - lr*wi = wi - 0.5wi

可以看出,L1每次更新都是减去一个固定的值,那就可能在多次迭代之后,权值为0的情况

而L2虽然权值也在减小,但是总不为0

需要注意的是,通常情况下,我们更倾向于对权值进行正则化,而不是对偏置进行正则化的原因有以下几点:

  1. 偏置的作用:偏置(bias)是模型中的一个常数项,它的作用是调整模型预测值与实际值之间的偏差。偏置通常用来解决模型在数据特征上的平移问题,而不会引入过多的复杂性。由于偏置只是一个常数,它的取值并不像权值那样会随着训练过程而变化,因此对偏置进行正则化对于控制模型的复杂度影响较小。

  2. 影响模型容量:正则化的目的是通过限制参数的取值范围来控制模型的复杂度,避免过拟合。权值在模型中起到了控制特征的重要作用,对权值进行正则化可以有效地减少模型的复杂度,提高泛化能力。而偏置的作用相对较小,对偏置进行正则化往往对模型的泛化能力影响较小。

  3. 数据中的偏移:在实际的数据中,通常会存在一些偏移(bias),即使我们对权值不进行正则化,模型也可以通过调整偏置来适应这种偏移。因此,对偏置进行正则化可能会导致对数据中的偏移进行过度拟合,而忽略了模型对其他特征的学习能力。

测试代码如下

import torch
import matplotlib.pyplot as plttorch.manual_seed(25)x_train = torch.tensor([1,2,3,4,5,6,7,8,9,10],dtype=torch.float32).unsqueeze(-1)
y_train = torch.tensor([0.52,8.54,6.94,20.76,32.17,30.65,40.46,80.12,75.12,98.83],dtype=torch.float32).unsqueeze(-1)
plt.scatter(x_train.detach().numpy(),y_train.detach().numpy(),marker='o',s=50,c='r')class Linear(torch.nn.Module):def __init__(self):super().__init__()self.layers = torch.nn.Sequential(torch.nn.Linear(in_features=1, out_features=3),torch.nn.Sigmoid(),torch.nn.Linear(in_features=3,out_features=5),torch.nn.Sigmoid(),torch.nn.Linear(in_features=5, out_features=10),torch.nn.Sigmoid(),torch.nn.Linear(in_features=10,out_features=5),torch.nn.Sigmoid(),torch.nn.Linear(in_features=5, out_features=1),torch.nn.ReLU(),)def forward(self,x):return self.layers(x)linear = Linear()opt = torch.optim.Adam(linear.parameters(),lr= 0.005)
loss_fn = torch.nn.MSELoss()for epoch in range(1000):for iter in range(10):L1 = 0L2 = 0for name,param in linear.named_parameters():if 'bias' not in name:L1 += torch.norm(param, p=1) * 1e-3L2 += torch.norm(param, p=2) * 1e-3opt.zero_grad()output = linear(x_train[iter])loss = loss_fn(output, y_train[iter]) + L1 + L2loss.backward()opt.step()if __name__ == '__main__':predict_loss = 0for i in range(1000):x = torch.tensor([i/100], dtype=torch.float32)y_predict = linear(x)plt.scatter(x.detach().numpy(),y_predict.detach().numpy(),s=2,c='b')plt.scatter(i/100,i*i/10000,s=2,c='y')predict_loss = (i*i/10000 - y_predict)**2/(y_predict)**2 + predict_loss
plt.show()

不使用L1,L2正则化的情况如下

只使用L1正则化的情况如下

只使用L2正则化的情况如下

同时使用L1和L2正则化的情况如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/175851.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Emscripten + CMakeLists.txt 将 C++ 项目编译成 WebAssembly(.wasm)/js,并编译 Html 测试

背景:Web 端需要使用已有的 C 库(使用 CMake 编译),需要将 C 项目编译成 WebAssembly(.wasm) 供 js 调用。 上篇文章《Mac 上安装 Emscripten》 已讲解如何安装配置 Emscripten 环境。 本篇文章主要讲解如何将基于 CMakeLists 配…

Gitee 发行版

Gitee 发行版 1、Gitee 发行版管理2、项目仓库中创建发行版本3、项目中导入3.1 gradle配置3.2 dependencies执行正常,包没有下载 1、Gitee 发行版管理 Gitee 发行版(Release)管理 2、项目仓库中创建发行版本 按照Gitee官网操作就行 3、项目…

PCIe 访问 EP 配置空间,空间映射详解,BDF 计算偏移

访问 EP 的配置空间方法 内存映射IO 访问 内存访问配置空间 前置知识 PCIe 设备的寻址是按照 BDF 即 Bus-Device-Function 来组织的。访问某个设备则需要根据BDF计算偏移地址。 两种不同的内存访问配置空间方法 类 xilinx,基地址 偏移地址访问 // linux-5.10\…

http1,https,http2,http3总结

1.HTTP 当我们浏览网页时,地址栏中使用最多的多是https://开头的url,它与我们所学的http协议有什么区别? http协议又叫超文本传输协议,它是应用层中使用最多的协议, http与我们常说的socket有什么区别吗? …

【ARM 嵌入式 C 入门及渐进 10 -- 冒泡排序 选择排序 插入排序 快速排序 归并排序 堆排序 比较介绍】

文章目录 排序算法小结排序算法C实现排序方法的稳定性 排序算法小结 C语言中常用的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。下面我们来一一介绍: 冒泡排序(Bubble Sort):冒泡排序是通过比较相邻…

android 8.1 disable unsupported sensor

如果device不支持某种sensor,可以在android/frameworks/base/core/java/android/hardware/SystemSensorManager.java里将其disabled掉。以disable proximity sensor为例。 public SystemSensorManager(Context context, Looper mainLooper) {synchronized(sLock) {if (!sNativ…

MWeb Pro for Mac:博客生成编辑器,助力你的创作之旅

在当今数字化时代,博客已经成为了许多人记录生活、分享知识和表达观点的重要渠道。而要打造一个专业、美观且易于管理的博客,选择一款强大的博客生成编辑器至关重要。今天,我向大家推荐一款备受好评的Mac软件——MWeb Pro。 MWeb Pro是一款专…

flutter深研

https://www.douyin.com/video/7020336319058627853 关闭系统风扇 在 Windows 操作系统上安装和配置 Flutter 开发环境 - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 下载Git - Downloading Package 推荐使用迅雷下载 系统配置要求 要想安装和运行 Flutter&#xf…

使用FastAPI部署Ultralytics YOLOv5模型

YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。 Python有几个web框…

如何将 ruby 打包类似于jdk在另一台相同架构的机器上面开箱即用

需求 目前工作中使用到了ruby作为java 项目的中转语言,但是部署ruby的时候由于环境的不同会出现安装依赖包失败的问题,如何找到一种开箱即用的方式类似于java 中的jdk内置jvm这种方式 解决 TruffleRuby 完美解决问题,TruffleRuby 是使用 T…

基于STC系列单片机实现外部中断0控制按键调节定时器0产生PWM(脉宽调制)的功能

#define uchar unsigned char//自定义无符号字符型为uchar #define uint unsigned int//自定义无符号整数型为uint sbit PwmOut P1^0;//位定义脉宽调制输出为单片机P1.0脚 uchar PwmTimeCount;//声明脉宽调制时间计数变量 uchar PwmDutyCycle;//声明脉宽调制占空比变量 void Ti…

Apache服务的搭建与配置(超详细版)

前言 Apache是一种常见的Web服务器软件,广泛用于Linux和其他UNIX操作系统上。它是自由软件,可以通过开放源代码的方式进行自由分发和修改。Apache提供了处理静态和动态内容的能力,而且还支持多种编程语言和脚本,如PHP、Python和P…

python数据可视化

内容主要介绍了python模块matplotlib即seaborn数据可视化 matplotlib模块通过import matplotlib.pyplot as plt生成图形,如生成图形没展示,可调用plt.show()方法展示图形; 对于颜色属性设置,既可以使用十六进制颜色表达(#7777aa…

cdrx8和2020哪个版本更好用?有什么区别

经过多年的发展,cdr推出了很多优秀的版本,并顺应时代的发展更新了多项功能。随着cdr推出的软件版本增多,小伙伴们可选择的产品也在增多,那么该怎么选择呢?本文会给大家介绍cdrx8和2020的区别,CDRX8和2020哪…

Pytorch 猫狗识别案例

猫狗识别数据集https://download.csdn.net/download/Victor_Li_/88483483?spm1001.2014.3001.5501 训练集图片路径 测试集图片路径 训练代码如下 import torch import torchvision import matplotlib.pyplot as plt import torchvision.models as models import torch.nn as…

基于静电放电算法的无人机航迹规划-附代码

基于静电放电算法的无人机航迹规划 文章目录 基于静电放电算法的无人机航迹规划1.静电放电搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用静电放电算法来优化无人机航迹规划。 …

0基础学习PyFlink——用户自定义函数之UDF

大纲 标量函数入参并非表中一行(Row)入参是表中一行(Row)alias PyFlink中关于用户定义方法有: UDF:用户自定义函数。UDTF:用户自定义表值函数。UDAF:用户自定义聚合函数。UDTAF&…

1400*C. Team(模拟构造)

Problem - 401C - Codeforces 解析&#xff1a; 因为0不能相邻&#xff0c;所以0之间最少 n-1 个位置&#xff0c;最多 n1 个位置&#xff0c;如果 m<n-1显然不符题意。 并且1最多连续两个&#xff0c;所以 m>2*n2 同样不符题意。 其余情况构造即可 #include<bits/st…

【嵌入式】【GIT】如何迁移老的GIF到新的仓库时使用LFS功能并保持LOG不变

一、正常迁移流程 假设有仓库 ssh://old/buildroot-201902 需要迁移到新的仓库 ssh://old/buildroot-201902时,我们可以使用以下命令来完成: # 下载老的仓库 git clone ssh://old/buildroot-201902 # 向新的仓库上传所有的tags git push ssh://new/buildroot-201902 --tag…

【网络安全】Seeker内网穿透追踪定位

Seeker追踪定位对方精确位置 前言一、kali安装二、seeker定位1、ngrok平台注册2、获取一次性邮箱地址3、ngrok平台登录4、ngrok下载5、ngrok令牌授权6、seeker下载7、运行seeker定位8、运行隧道开启监听9、伪装链接10、用户点击&#xff08;获取定位成功&#xff09;11、利用经…