Iterator 迭代器也是属于“数据结构”模式。GoF中面向对象的迭代器已经过时,C++中目前使用泛型编程的方式实现,其他语言还在使用面向对象的迭代器。
文章目录
- 1. 动机(Motivation)
- 2. 模式定义
- 3. Iterator 迭代器代码分析
- 4. 面向对象的迭代器与泛型编程实现的迭代器的对比
- 5. 结构( Structure )
- 6. 要点总结
- 7. 其他参考
1. 动机(Motivation)
- 在软件构建过程中,集合对象内部结构常常变化各异。但对于这些集合对象,我们希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素;同时这种“透明遍历”也为同一种算法在多种集合对象上进行操作”提供了可能。
不关心内部实现结构,一种算法可以应用到树形结构,也可以应用到链表、堆、栈的结构
- 使用面向对象技术将这种遍历机制抽象为“迭代器对象”为“应对变化中的集合对象”提供了一种优雅的方式。
2. 模式定义
提供一种方法顺序访问一个聚合对象中的各个元素,而又不暴露(稳定)
该对象的内部表示。
----《设计模式》GoF
GoF中最早提出面向对象对象的方式实现迭代器,但是在讲面向对象的方式之前,需要重点说一下,这种方式在C++今天来讲已经过时了,因为学过STL泛型编程的都知道泛型编程中存在迭代器,思想与今天所讲的是一样的,都是通过一种接口的方式来隔离算法和容器之间的变化,但是GoF当初定义是面向对象的方式来定义的。
3. Iterator 迭代器代码分析
整体代码:
template<typename T>
class Iterator
{
public:virtual void first() = 0;virtual void next() = 0;virtual bool isDone() const = 0;virtual T& current() = 0;
};template<typename T>
class MyCollection{public:Iterator<T> GetIterator(){//...}};template<typename T>
class CollectionIterator : public Iterator<T>{MyCollection<T> mc;
public:CollectionIterator(const MyCollection<T> & c): mc(c){ }void first() override {}void next() override {}bool isDone() const override{}T& current() override{}
};void MyAlgorithm()
{MyCollection<int> mc;Iterator<int> iter= mc.GetIterator();for (iter.first(); !iter.isDone(); iter.next()){cout << iter.current() << endl;}}
代码分析:
首先来看GoF定义的代码,面向对象的方式
template<typename T>
class Iterator
{
public:virtual void first() = 0;virtual void next() = 0;virtual bool isDone() const = 0;virtual T& current() = 0;
};
first()提供第一个元素;next()是往下一个元素走;isDone() 代表到头了;T& current()是取你当前的一组;有些设计会将next()和T& current()合二为一。
template<typename T>
class MyCollection{public:Iterator<T> GetIterator(){//...}};
MyCollection是自己定义的集合,会返回一个属于我这个集合的迭代器
template<typename T>
class CollectionIterator : public Iterator<T>{MyCollection<T> mc;
public:CollectionIterator(const MyCollection<T> & c): mc(c){ }void first() override {}void next() override {}bool isDone() const override{}T& current() override{}
};
继承Iterator抽象类,对纯虚函数进行实现,一般实现的时候需要将集合传递进来CollectionIterator(const MyCollection<T> & c): mc(c){ }
到具体使用的时候
void MyAlgorithm()
{MyCollection<int> mc; //塞一个类型Iterator<int> iter= mc.GetIterator(); //拿到迭代器//进行遍历操作for (iter.first(); !iter.isDone(); iter.next()){cout << iter.current() << endl;}}
4. 面向对象的迭代器与泛型编程实现的迭代器的对比
当我们说到面向对象时,多态是其特征。像刚才说,这种面向对象的设计已经过时,就因为泛型编程,STL库在98年出来之后,大家一对比发现,面向对象的实现方式具有很多的缺点,具体来说最核心的缺点就出在面向对象上,面向对象的方式都是虚函数调用,虚函数都是有性能成本的,要绕虚表指针找到函数地址,需要二次指针的间接运算,每次都这样做,当进行遍历操作时,数据假如有10万个元素,这个循环造成的成本就差了很多。
//进行遍历操作for (iter.first(); !iter.isDone(); iter.next()){cout << iter.current() << endl;}
98年之后的C++泛型编程中使用到的迭代器是使用模板来描述的,而模板也是一种多态技术,其实现的多态是编译式多态,即编译器在编译的时候会遍析具体的源代码,但是虚函数是运行时多态,运行时多态性能要低于编译时多态,因为编译时已经把工作做了,运行时直接调用源代码,不需要计算函数地址,因此以STL为标准的泛型编程广泛使用的是基于模板的多态迭代器,性能高于虚函数面向对象的迭代器。
而且第二个,泛型编程里有很多种迭代器,迭代器的接口发展出了更多的可能性,上面的写法只支持往前走(next()),不支持往回走(back()),我们知道泛型编程里迭代器可以++往前,--往后走
,这些通过虚函数实现也可以,但是成本很高。模板的灵活性基于隐式约束,可以利用++、–操作符做为接口描述,面向对象只有虚函数一种。事实也证明,有了泛型编程的迭代器,大家再也不会用面向对象的迭代器。
但是上面所写的设计思路在其他语言,比如java,C#等得等到了极大的应用(基于运行时的多态),其他语言不支持编译时的模板体制。
5. 结构( Structure )
上图是《设计模式》GoF中定义的Iterator 迭代器的设计结构。结合上面的代码看图中对应关系如下图。
6. 要点总结
-
迭代抽象:访问一个聚合对象的内容而无需暴露它的内部表示。
-
迭代多态:为遍历不同的集合结构提供一个统一的接口,从而支持同样的算法在不同的集合结构上进行操作。
-
迭代器的健壮性考虑:遍历的同时更改迭代器所在的集合结构,会导致问题。
7. 其他参考
C++设计模式——迭代器模式