本机运行代码
package com.example.hadoop.api.mr;import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordCount {/*** Text:指的是StringWritable* (LongWritable , Text) map端的输入:这俩参数永远不变,Text:文本数据,LongWritable:偏移量(数据分割时的偏移量)** (Text, IntWritable) map端的输出:根据需求一直处于变化中*/public static class MapTask extends Mapper<LongWritable,Text, Text, IntWritable>{/*** 每次读取一行数据,该方法就执行一次* 样例数据* hadoop,hadoop,spark,spark,spark,* hive,hadoop,spark,spark,spark,* spark,hadoop,hive,spark,spark,* @param key 偏移量* @param value 文本数据* @param context 输出数据(hadoop,1) (spark,1)*/@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {String[] words = value.toString().split(",");for (String word:words){context.write(new Text(word),new IntWritable(1));}}}/*** reduce map的输出就是reduce的输入*/public static class ReduceTask extends Reducer<Text,IntWritable,Text,IntWritable>{/*** 每操作一次key,方法就执行一遍* @param key* @param values* @param context* @throws IOException* @throws InterruptedException*/@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int count = 0 ;for(IntWritable value:values){count++;}context.write(key,new IntWritable(count));}}public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {//本地测试模式,job对象提交任务Job job = Job.getInstance();//提交我们的俩内部类job.setMapperClass(MapTask.class);job.setReducerClass(ReduceTask.class);//提交输出参数的类型,注意只要输出参数类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job,new Path("mr/wordcount.txt"));FileOutputFormat.setOutputPath(job,new Path("mr/outwordCount"));Boolean b = job.waitForCompletion(true);System.out.println(b?"成功":"失败请找bug");}
}
本机idea运行后发现报错
点击本机D:\hadoop-2.9.2\bin目录下winutils.exe报错msvcr100.dll找不到,说明缺少C++的运行环境,msvcr100.dll对应的是2010C++的运行环境,我的电脑是X64的,选择自己电脑的版本下载后直接安装即可
https://www.microsoft.com/en-us/download/details.aspx?id=26999
安装完成,保险起见可以将C:\Windows\System32\msvcr100.dll复制一份到hadoop的安装目录bin下D:\hadoop-2.9.2\bin
再次运行WordCount.java main方法,报错如下
现在又缺少hadoop.dll文件,所以单独下载下这个文件
https://github.com/steveloughran/winutils
选择一个和自己版本相近的,下载下来之后,copy到hadoop安装目录下
重启电脑,运行成功
运行后的统计结果
集群代码
package com.example.hadoop.api.mr;import com.example.hadoop.util.SystemUtil;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.File;
import java.io.IOException;/*** @author wangmeiyan* @Date 2023/11/02 17:10:00* 集群mapReduce*/
public class WordCountColony {/*** Text:指的是StringWritable* (LongWritable , Text) map端的输入:这俩参数永远不变,Text:文本数据,LongWritable:偏移量(数据分割时的偏移量)** (Text, IntWritable) map端的输出:根据需求一直处于变化中*/public static class MapTask extends Mapper<LongWritable, Text, Text, IntWritable> {/*** 每次读取一行数据,该方法就执行一次* 样例数据* hadoop,hadoop,spark,spark,spark,* hive,hadoop,spark,spark,spark,* spark,hadoop,hive,spark,spark,** @param key 偏移量* @param value 文本数据* @param context 输出数据(hadoop,1) (spark,1)*/@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {String[] words = value.toString().split(",");for (String word : words) {context.write(new Text(word), new IntWritable(1));}}}/*** reduce map的输出就是reduce的输入*/public static class ReduceTask extends Reducer<Text,IntWritable,Text,IntWritable> {/*** 每操作一次key,方法就执行一遍* @param key* @param values* @param context* @throws IOException* @throws InterruptedException*/@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {int count = 0 ;for(IntWritable value:values){count++;}context.write(key,new IntWritable(count));}}public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {//集群测试模式,job对象提交任务Configuration configuration = new Configuration();String hdfsUrl = SystemUtil.getProperties().getProperty("spring.hdfs.url");configuration.set("fs.defaultFS",hdfsUrl);Job job = Job.getInstance(configuration);//提交我们的俩内部类job.setMapperClass(WordCount.MapTask.class);job.setReducerClass(WordCount.ReduceTask.class);//提交输出参数的类型,注意只要输出参数类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job,new Path(SystemUtil.getProperties().getProperty("spring.hdfs.input")));//如果文件已经存在就删除Path output = new Path(SystemUtil.getProperties().getProperty("spring.hdfs.output"));FileSystem fileSystem = FileSystem.get(configuration);if(fileSystem.exists(output)){fileSystem.delete(output,true);}FileOutputFormat.setOutputPath(job,output);Boolean b = job.waitForCompletion(true);System.out.println(b?"成功":"失败请找bug");}
}
hadoop页面上准备好目录和待统计的文件
直接运行代码,查看统计结果