YOLOv5:按每个类别的不同置信度阈值输出预测框

YOLOv5:按每个类别的不同置信度阈值输出预测框

  • 前言
  • 前提条件
  • 相关介绍
  • YOLOv5:按每个类别的不同置信度阈值输出预测框
    • 预测
      • 修改detect.py
      • 输出结果
    • 验证
      • 修改val.py
      • 输出结果
  • 参考

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。

YOLOv5:按每个类别的不同置信度阈值输出预测框

在这里插入图片描述

预测

在这里插入图片描述

修改detect.py

				# filter with label, class, mapfilter_score_maps = {0 : 0.45, # person5 : 0.85, # bus}# Write resultsfor *xyxy, conf, cls in reversed(det):# filter with label, class # 按照各个类别框的置信度,过滤框if int(cls) in filter_score_maps.keys() and conf < filter_score_maps[int(cls)]:continueif save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or save_crop or view_img:  # Add bbox to imagec = int(cls)  # integer classlabel = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')annotator.box_label(xyxy, label, color=colors(c, True))if save_crop:save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

在这里插入图片描述

输出结果

在这里插入图片描述

验证

在这里插入图片描述

修改val.py

            # filter with label, class, mapfilter_score_maps = {0 : 0.45, # person5 : 0.85, # bus}# Write resultsfilter_pred = []for i,(*xyxy, conf, cls) in enumerate(pred):# filter with label, class # 按照各个类别框的置信度,过滤框# print((i,conf, cls))if (int(cls) not in filter_score_maps.keys()) or (int(cls) in filter_score_maps.keys() and conf > filter_score_maps[int(cls)]):filter_pred.append(pred[i].tolist())pred = torch.Tensor(filter_pred).to(device)

在这里插入图片描述

输出结果

在这里插入图片描述

参考

[1] https://github.com/ultralytics/yolov5.git

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180621.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

走近Python爬虫(二):常见反爬虫机制的应对措施

文章目录 一、应对—异步加载1.一般措施2.Selenium 二、应对—登录验证1.使用Selenium模拟登录2.使用Cookies登录3.使用Session模拟表单登录 三、应对—验证码 本文是Python爬虫系列博客的第二篇&#xff0c;内容概览如下&#xff1a; 一、应对—异步加载 1.一般措施 AJAX技术…

在二维矩阵/数组中查找元素 Leetcode74, Leetcode240

这一类题型中二维数组的元素取值有序变化&#xff0c;因此可以用二分查找法。我们一起来看一下。 一、Leetcode 74 Leetcode 74. 搜索二维矩阵 这道题要在一个二维矩阵中查找元素。该二维矩阵有如下特点&#xff1a; 每行元素 从左到右 按非递减顺序排列。每行的第一个元素 …

【ArcGIS模型构建器】06:ArcGIS中DOM批量分幅教程

ArcGIS中利用模型构建器实现DOM批量分幅裁剪。 文章目录 1. 加载数据2. 批量分幅1. 加载数据 批量分幅通常是基于数字正射影像来实现。 数字正射影像(DOM.tif)CASS标准图幅(shp) 2. 批量分幅 单个图幅可以通过裁剪或者按掩膜提取工具来进行,批量分幅采用模型构建器进行。…

虹科案例 | AR内窥镜手术应用为手术节约45分钟?

相信医疗从业者都知道&#xff0c;在手术室中有非常多的医疗器械屏幕&#xff0c;特别是内窥镜手术室中医生依赖这些内窥镜画面来帮助病患进行手术。但手术室空间有限&#xff0c;屏幕缩放位置相对固定&#xff0c;在特殊场景下医生观看内窥镜画面时无法关注到病患的状态。这存…

Linux背景介绍与环境搭建

本章内容 认识 Linux, 了解 Linux 的相关背景学会如何使用云服务器掌握使用远程终端工具 xshell 登陆 Linux 服务器 Linux 背景介绍 发展史 本门课程学习Linux系统编程&#xff0c;你可能要问Linux从哪里来&#xff1f;它是怎么发展的&#xff1f;在这里简要介绍Linux的发展…

MFC 窗体插入图片

1.制作BMP图像1.bmp 放到res文件夹下&#xff0c;资源视图界面导入res文件夹下的1.bmp 2.添加控件 控件类型修改为Bitmap 图像&#xff0c;选择IDB_BITMAP1 3.效果

MySQL---搜索引擎

MySQL的存储引擎是什么 MySQL当中数据用各种不同的技术存储在文件中&#xff0c;每一种技术都使用不同的存储机制&#xff0c;索引技巧 锁定水平&#xff0c;以及最终提供的不同的功能和能力&#xff0c;这些就是我们说的存储引擎。 MySQL存储引擎的功能 1.MySQL将数据存储在文…

LabVIEW对多个同一类型控件进行操作

LabVIEW对多个同一类型控件进行操作 有时候LabVIEW要多多个同一类的控件进行操作&#xff0c;如对tab中某个page中所有String控件设为dissable。就可以用如下的方式。className是获取不同类型的控件。通过类型选择&#xff0c;可以选择所有的String控件&#xff0c;并可对特定…

双链表详解(初始化、插入、删除、遍历)(数据结构与算法)

1. 单链表与双链表的区别 单链表&#xff08;Singly Linked List&#xff09;和双链表&#xff08;Doubly Linked List&#xff09;是两种常见的链表数据结构&#xff0c;它们在节点之间的连接方式上有所区别。 单链表&#xff1a; 单链表的每个节点包含两个部分&#xff1a;数…

Synchronized与锁升级

一&#xff1a;java对象内存布局 对象在堆内存的存储布局可以划分为三个部分&#xff1a;对象头&#xff08;Header&#xff09;、实例数据&#xff08;Instance Data&#xff09; 和对齐填充 二&#xff1a;对象在堆内存中的存储布局 三&#xff1a;Sychronized的锁升级 S…

使用vscode实现远程开发,并通过内网穿透在公网环境下远程连接

文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…

中文大语言模型汇总

推荐一篇非常棒的github&#xff1a;Awesome-Chinese-LLM 另附语言模型排行榜&#xff1a;FastChat 里面总结了几乎所有目前主流的中文大语言模型。在此记录一下&#xff0c;方便以后慢慢学习。

Adobe After Effects 2024(Ae2024)在新版本中的升级有哪些?

After Effects 2024是Adobe公司推出的一款视频处理软件&#xff0c;它适用于从事设计和视频特技的机构&#xff0c;包括电视台、动画制作公司、个人后期制作工作室以及多媒体工作室。通过After Effects&#xff0c;用户可以高效且精确地创建无数种引人注目的动态图形和震撼人心…

串口代码整合2-如何接收数据?

本文为博主 日月同辉&#xff0c;与我共生&#xff0c;csdn原创首发。希望看完后能对你有所帮助&#xff0c;不足之处请指正&#xff01;一起交流学习&#xff0c;共同进步&#xff01; > 发布人&#xff1a;日月同辉,与我共生_单片机-CSDN博客 > 欢迎你为独创博主日月同…

基于SSM的搬家预约系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

阿里云安全恶意程序检测

阿里云安全恶意程序检测 赛题理解赛题介绍赛题说明数据说明评测指标 赛题分析数据特征解题思路 数据探索数据特征类型数据分布箱型图 变量取值分布缺失值异常值分析训练集的tid特征标签分布测试集数据探索同上 数据集联合分析file_id分析API分析 特征工程与基线模型构造特征与特…

List 接口常用实现类底层分析

一、集合 1.1 简介 集合主要分为两组&#xff08;单列集合、双列集合&#xff09;&#xff0c;Collection 接口有两个重要的子接口 List 和Set&#xff0c;它们的实现子类都是单列集合。Map 接口的实现子类是双列集合&#xff0c;存放的是 K-V 1.2 关系图 二、Collection 接口…

openLayers--绘制多边形、获取视图的中心点、获取当前地图等级、设置地图等级

openLayers绘制多边形、获取视图中心点 前言效果图1、导入LineString2、创建添加多边形3、定义多变形样式4、获取当前视图的中心点5、获取当前视图等级6、设置地图等级 前言 上一篇文章在vue项目中绘制了openlayers绘制了地图和标记点&#xff0c;本篇文章讲解openlayers绘制多…

【IDEA使用maven package时,出现依赖不存在以及无法从仓库获取本地依赖的问题】

Install Parent project C:\Users\lxh\.jdks\corretto-1.8.0_362\bin\java.exe -Dmaven.multiModuleProjectDirectoryD:\学习\projectFile\study\study_example_service "-Dmaven.homeD:\Program Files\JetBrains\IntelliJ IDEA2021\plugins\maven\lib\maven3" "…

独创改进 | RT-DETR 引入双向级联特征融合结构 RepBi-PAN | 附手绘结构图原图

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 文章目录 YOLOv6贡献RepBi-…