视频地址:尚硅谷大数据项目《在线教育之实时数仓》_哔哩哔哩_bilibili
目录
第9章 数仓开发之DWD层
P031
P032
P033
P034
P035
P036
P037
P038
P039
P040
第9章 数仓开发之DWD层
P031
DWD层设计要点:
(1)DWD层的设计依据是维度建模理论,该层存储维度模型的事实表。
(2)DWD层表名的命名规范为dwd_数据域_表名。
存放事实表,从kafka的topic_log和topic_db中读取需要用到的业务流程相关数据,将业务流程关联起来做成明细数据写回kafka当中。
尚硅谷大数据学科全套教程\3.尚硅谷大数据学科--项目实战\尚硅谷大数据项目之在线教育数仓\尚硅谷大数据项目之在线教育数仓-3实时\资料\13.总线矩阵及指标体系
在线教育实时业务总线矩阵.xlsx
9.1.3 图解
P032
package com.atguigu.edu.realtime.app.dwd.log;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.util.DateFormatUtil;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SideOutputDataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;/*** @author * @create 2023-04-21 14:01*/
public class BaseLogApp {public static void main(String[] args) throws Exception {//TODO 1 创建环境设置状态后端StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(1);//TODO 2 从kafka中读取主流数据String topicName = "topic_log";String groupId = "base_log_app";DataStreamSource<String> baseLogSource = env.fromSource(KafkaUtil.getKafkaConsumer(topicName, groupId),WatermarkStrategy.noWatermarks(),"base_log_source");//TODO 3 对数据进行清洗转换// 3.1 定义侧输出流OutputTag<String> dirtyStreamTag = new OutputTag<String>("dirtyStream") {};// 3.2 清洗转换SingleOutputStreamOperator<JSONObject> cleanedStream = baseLogSource.process(new ProcessFunction<String, JSONObject>() {@Overridepublic void processElement(String value, Context ctx, Collector<JSONObject> out) throws Exception {try {JSONObject jsonObject = JSON.parseObject(value);out.collect(jsonObject);} catch (Exception e) {ctx.output(dirtyStreamTag, value);}}});// 3.3 将脏数据写出到kafka对应的主题SideOutputDataStream<String> dirtyStream = cleanedStream.getSideOutput(dirtyStreamTag);String dirtyTopicName = "dirty_data";dirtyStream.sinkTo(KafkaUtil.getKafkaProducer(dirtyTopicName, "dirty_trans"));//TODO 4 新老访客标记修复//TODO 5 数据分流//TODO 6 写出到kafka不同的主题//TODO 7 执行任务}
}
P033
KafkaUtil.java
P034
新老访客逻辑介绍
P035
BaseLogApp.java
//TODO 4 新老访客标记修复
[atguigu@node001 log]$ pwd
/opt/module/data_mocker/01-onlineEducation/log
[atguigu@node001 log]$ cat -n 200 app.2023-09-19.log
{"common":{"ar":"26","ba":"iPhone","ch":"Appstore","is_new":"0","md":"iPhone 8","mid":"mid_188","os":"iOS 13.3.1","sc":"1","sid":"b4d6c8eb-d025-4855-af0a-fe351ff16ef9","uid":"20","vc":"v2.1.134"},"page":{"during_time":901000,"item":"173","item_type":"paper_id","last_page_id":"course_detail","page_id":"exam"},"ts":1645456489411}
{"common":{"ar":"26","ba":"iPhone","ch":"Appstore","is_new":"0","md":"iPhone 8","mid":"mid_188","os":"iOS 13.3.1","sc":"1","sid":"b4d6c8eb-d025-4855-af0a-fe351ff16ef9","uid":"20","vc":"v2.1.134"},"page":{"during_time":901000,"item":"173","item_type":"paper_id","last_page_id":"course_detail","page_id":"exam"},"ts":1645456489411
}
P036
BaseLogApp.java
//TODO 5 数据分流
P037
//TODO 6 写出到kafka不同的主题
hadoop、zookeeper、kafka。
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic page_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic action_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic display_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic start_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic error_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic appVideo_topic
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic page_topic
[2023-11-01 14:36:17,581] WARN [Consumer clientId=consumer-console-consumer-7492-1, groupId=console-consumer-7492] Error while fetching metadata with correlation id 2 : {page_topic=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)
[2023-11-01 14:36:18,710] WARN [Consumer clientId=consumer-console-consumer-7492-1, groupId=console-consumer-7492] Error while fetching metadata with correlation id 6 : {page_topic=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)
[2023-11-01 14:36:18,720] WARN [Consumer clientId=consumer-console-consumer-7492-1, groupId=console-consumer-7492] The following subscribed topics are not assigned to any members: [page_topic] (org.apache.kafka.clients.consumer.internals.ConsumerCoordinator)
[atguigu@node001 ~]$ f1.sh start-------- 启动 node001 采集flume启动 -------
[atguigu@node001 ~]$ cd /opt/module/data
data/ data_mocker/ datax/
[atguigu@node001 ~]$ cd /opt/module/data
data/ data_mocker/ datax/
[atguigu@node001 ~]$ cd /opt/module/data_mocker/
[atguigu@node001 data_mocker]$ cd 01-onlineEducation/
[atguigu@node001 01-onlineEducation]$ ll
总用量 30460
-rw-rw-r-- 1 atguigu atguigu 2223 9月 19 10:43 application.yml
-rw-rw-r-- 1 atguigu atguigu 4057995 7月 25 10:28 edu0222.sql
-rw-rw-r-- 1 atguigu atguigu 27112074 7月 25 10:28 edu2021-mock-2022-06-18.jar
drwxrwxr-x 2 atguigu atguigu 4096 10月 26 14:01 log
-rw-rw-r-- 1 atguigu atguigu 1156 7月 25 10:44 logback.xml
-rw-rw-r-- 1 atguigu atguigu 633 7月 25 10:45 path.json
[atguigu@node001 01-onlineEducation]$ java -jar edu2021-mock-2022-06-18.jar
SLF4J: Class path contains multiple SLF4J bindings.
P038
9.2 流量域独立访客事务事实表
P039
package com.atguigu.edu.realtime.app.dwd.log;import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONAware;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.edu.realtime.util.DateFormatUtil;
import com.atguigu.edu.realtime.util.EnvUtil;
import com.atguigu.edu.realtime.util.KafkaUtil;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFilterFunction;
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @author yhm* @create 2023-04-21 16:24*/
public class DwdTrafficUniqueVisitorDetail {public static void main(String[] args) throws Exception {// TODO 1 创建环境设置状态后端StreamExecutionEnvironment env = EnvUtil.getExecutionEnvironment(4);// TODO 2 读取kafka日志主题数据String topicName = "dwd_traffic_page_log";DataStreamSource<String> pageLogStream = env.fromSource(KafkaUtil.getKafkaConsumer(topicName, "dwd_traffic_unique_visitor_detail"), WatermarkStrategy.noWatermarks(), "unique_visitor_source");// TODO 3 转换结构,过滤last_page_id不为空的数据SingleOutputStreamOperator<JSONObject> firstPageStream = pageLogStream.flatMap(new FlatMapFunction<String, JSONObject>() {@Overridepublic void flatMap(String value, Collector<JSONObject> out) throws Exception {try {JSONObject jsonObject = JSON.parseObject(value);String lastPageID = jsonObject.getJSONObject("page").getString("last_page_id");if (lastPageID == null) {out.collect(jsonObject);}} catch (Exception e) {e.printStackTrace();}}});// TODO 4 安装mid分组KeyedStream<JSONObject, String> keyedStream = firstPageStream.keyBy(new KeySelector<JSONObject, String>() {@Overridepublic String getKey(JSONObject value) throws Exception {return value.getJSONObject("common").getString("mid");}});// TODO 5 判断独立访客SingleOutputStreamOperator<JSONObject> filteredStream = keyedStream.filter(new RichFilterFunction<JSONObject>() {ValueState<String> lastVisitDtState;@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);ValueStateDescriptor<String> stringValueStateDescriptor = new ValueStateDescriptor<>("last_visit_dt", String.class);// 设置状态的存活时间stringValueStateDescriptor.enableTimeToLive(StateTtlConfig.newBuilder(Time.days(1L))// 设置状态的更新模式为创建及写入// 每次重新写入的时候记录时间 到1天删除状态.setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).build());lastVisitDtState = getRuntimeContext().getState(stringValueStateDescriptor);}@Overridepublic boolean filter(JSONObject jsonObject) throws Exception {String visitDt = DateFormatUtil.toDate(jsonObject.getLong("ts"));String lastVisitDt = lastVisitDtState.value();// 对于迟到的数据,last日期会大于visit日期,数据也不要if (lastVisitDt == null || (DateFormatUtil.toTs(lastVisitDt) < DateFormatUtil.toTs(visitDt))) {lastVisitDtState.update(visitDt);return true;}return false;}});// TODO 6 将独立访客数据写出到对应的kafka主题String targetTopic = "dwd_traffic_unique_visitor_detail";SingleOutputStreamOperator<String> sinkStream = filteredStream.map((MapFunction<JSONObject, String>) JSONAware::toJSONString);sinkStream.sinkTo(KafkaUtil.getKafkaProducer(targetTopic, "unique_visitor_trans"));// TODO 7 运行任务env.execute();}
}
P040
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic dwd_traffic_unique_visitor_detail
[atguigu@node001 ~]$ kafka-console-consumer.sh --bootstrap-server node001:9092 --topic dwd_traffic_page_log[atguigu@node001 01-onlineEducation]$ cd /opt/module/data_mocker/01-onlineEducation/
[atguigu@node001 01-onlineEducation]$ java -jar edu2021-mock-2022-06-18.jar