云计算的大模型之争,亚马逊云科技落后了?

文丨智能相对论

作者丨沈浪

“OpenAI使用了Azure的智能云服务”——在过去的半年,这几乎成为了微软智能云最好的广告词。

正所谓“水涨船高”,凭借OpenAI旗下的ChatGPT在全球范围内爆发,微软趁势拉了一波自家的云计算业务。2023年二季度,微软旗下Azure云业务营收增长26%,仍维持着较高的增长姿态。

相对来说,作为云计算的开创者,亚马逊云科技则面临着较为窘迫的处境。在一季度营收同比增速降到16%之后,二季度的同比增速仍在下滑,降至12%,创2015年公布云业务数据以来的历史低值。

并非所有的云计算发展路径都按照亚马逊云科技预想的方向前进。大模型的爆发,似乎打乱了这位巨头的节奏,增长失速的处境已经困扰了多个季度。

那么,亚马逊云科技真的在这场大模型之争中落后了?

01、强守基本盘

今年4月,亚马逊云科技发布Amazon Bedrock,正式向大模型领域发起进攻。

Amazon Bedrock这款王牌产品的逻辑类似于“大模型工厂”,用户可以基于该产品服务,在亚马逊高性能基础设施的安全环境中,利用自己的专有数据发现、训练和调整自己的模型,而不需要再去花额外的成本或精力去管理其他事务。

在中国,华为、腾讯等国内云巨头也在做类似的服务。

对于占据行业TOP地位或具备较强生态影响力的厂商而言,这样的思路屡试不爽——凭借原有的技术环境和生态优势(比如成熟的云服务以及商业生态),迅速拉拢其他的新领域力量(比如其他的大模型厂商),形成“借力打力”的效果,从而完成对新领域(比如大模型领域)的扩张。

这样的路径往往也最考验厂商的行业号召力和影响力。而对于亚马逊云科技这样的全球云计算服务龙头而言,这并不是问题。目前,Amazon Bedrock接入了AI21 Labs、Anthropic、Cohere Inc.、Meta Platforms Inc.、Stability AI Ltd.等领先人工智能公司的高性能大模型以及亚马逊云科技自研的定制大模型等等。

用户在Amazon Bedrock上选择好基础模型,写好代码就可以使用亚马逊云科技高性能的基础设施来训练和应用自己的专用大模型,并生成对应的应用。这些基础设施包括了包括亚马逊云科技 Inferentia 支持的 Amazon EC2 Inf1 实例、亚马逊云科技 Trainium 支持的 Amazon EC2 Trn1 实例以及英伟达 H100 Tensor Core GPU 支持的 Amazon EC2 P5 实例。

在基础框架、模型和算力支持之外,亚马逊云科技基于此前云计算体系构建的能力还能为用户提供更多、更强大的开发者工具,比如端到端的数据服务,帮助用户快速、安全、准确地获取数据、处理数据等;AI代码生成服务,有数十亿行公开可用的开源代码供用户使用等等。

这些能力构建的背后,都足以证明亚马逊云科技作为全球云计算服务龙头的深厚沉淀和强大实力。但是,回归大模型领域,亚马逊云科技的战略意图并不算激进,反而有些保守——做了这么多,亚马逊云科技主要还是在用云服务的逻辑和能力去推动第三方大模型的复用和落地,而非主动地去挖掘未来生成式AI的应用潜力。

亚马逊云科技充当了“买铲人”的身份,还是做底层云服务,强守基本盘,把大模型的未来发展空间留给了第三方合作伙伴。

这符合亚马逊云科技一贯的作风,但是这样的作风也注定在短期内亚马逊云科技相比其他更激进的巨头会欠缺一些关注度。

02、中国市场的“隐形巨头”

在中国,亚马逊云科技的关注度就远不如本土的云巨头。

尽管亚马逊云科技位居中国IaaS+PaaS公有云市场(含出海业务)的第二名,但是一旦剔除出海业务,其排名又掉落到了第五,且在国内市场的关注度和讨论度上也远比其他云巨头要少得多。

现阶段,大模型之争在中国云服务市场打得火热,亚马逊云科技虽是入了局,也如同华为、腾讯那般发布了类似“大模型工厂”的平台产品,但是却没有华为、腾讯那样的市场热度。

为什么?抛开品牌因素和环境因素不谈,中国的市场似乎对大模型的发展有着独特判断。

以华为的盘古大模型体系为例,其“5+N+X”三层架构呈现的正是中国市场的应用范式,最底层的“5”代表着华为盘古自研的5个基础大模型,包括自然语言、视觉、多模态、预测、科学计算大模型。

“N+X”对应的N个行业大模型和X类细化场景模型则是在这5个基础大模型上进行延伸和打造。也就是说,中国市场的行业客户推崇的路径实际上是“你做了,且有工具,再带着我做或是教我细化去做”类似的模式,而不是“我这有工具,你来做大模型吧”这种模式。

前者的代表是以华为为代表的本土云厂商,有云业务,也有大模型,能提供相关开发者工具的同时也能提供更细致的建设经验,因而更受本土行业客户的青睐。

而行业客户对后者的印象则停留在了亚马逊云科技的身上,虽有高性价比的开发者工具和基础设施,但是其自研的大模型产品并没有太多声音,在用户心目中不具备认知,也就没有实践经验,无法更好地吸引本土的行业客户。

两相对比之下,亚马逊云科技虽然也是云服务市场的巨头,但却成了中国大模型之争的“隐形巨头”。6月28日,亚马逊云科技在上海举行中国峰会,重点宣传自家的生成式AI服务,但是似乎没有把握好中国本土客户的商业心理,其扎实的产品和优质的服务并没有在中国市场引起太大的水花。

那么,这位全球云巨头在中国就只能继续保持“隐形”。

03、没有唯一的出路

大模型之争虽是趋势,但是云计算的未来出路也并非只有大模型一个。

对比亚马逊云科技、微软智能云、谷歌云三大全球云厂商,在2023年第二季度,营收同比增长势头最好的并非前两者,而是谷歌云,同比增速约为28%。

很显然,微软在大模型领域的发力程度和领先优势都要大于谷歌,但是市场的反馈却一反常态。

目前来看,一方面大模型的落地仍需验证,这一新领域并没有释放出完全的商业价值,很多厂商仍是投入大于产出的状态。另一方面,大模型的落地更注重与行业场景的结合,重点是对垂直业务的深耕,这恰恰是谷歌云在AI领域的优势。

换句话说,亚马逊云科技不必担心现阶段的大模型之争,真正的商业拐点还没有到来。——这或许可以给予这位云巨头一些心理安慰,摆在大模型市场面前的依旧是一片混沌的状态。

反观微软,在大模型领域似乎就有些操之过急的,但是亚马逊云科技若是再迟疑,又显得有些笨拙了。

现阶段,不仅是中国的行业客户和投资者,哪怕是华尔街的金融精英们,在历经几波AI浪潮后,也都更加理性和务实,相比之前更关注AI的落地效果。

从谷歌云的市场反馈来看,谁能解决垂直领域的场景问题,谁就能在这次的大模型之争中撷取更多的市场份额。这对于亚马逊云科技而言,并非完全没有机会。

在亚马逊云科技的平台上,一家名为Eclix Tech 的国际智能营销服务商,正通过使用生成式 AI 帮助进行内容分发,降低了50%电商产品相关的成本,并提升了35%的效率,同时还降低了45%的点击成本。

这是一个相对不错的成绩。或许,对于亚马逊云科技而言,面向大模型之争,应当多向市场讲讲自己能帮助客户群体做些什么,获得什么,而不是谈论自己有什么。

在云计算的大模型之争中,市场更关注云厂商能结合云技术和大模型来为客户带来什么样的效益。现如今,亚马逊云科技已经完成大中华区的换帅工作,储瑞松接替张文翊,担任亚马逊全球副总裁、亚马逊云科技大中华区执行董事。

两人虽然都是技术出身,但是相比张文翊,储瑞松曾担任过百度集团副总裁,负责领导百度阿波罗智能汽车业务。换句话说,储瑞松有过带领本土AI团队从0到1开辟新领域、新业务的项目经验和工作能力,由他来掌舵,或许能让亚马逊云科技更清楚地厘清中国市场的真实动态以及深层需求。

那么,从换帅的动作来看,亚马逊云科技在中国市场或将采用更积极的市场策略,不仅要和本土云巨头抢市场份额,还需要进一步占领用户心智。数据显示,今年上半年,亚马逊云科技大中华区总营收为18亿美元,对比去年同期的15亿美元营收增速不足20%。

摆在亚马逊云科技和储瑞松面前的营收压力,并不低。在大模型之争的现阶段,储瑞松需要为亚马逊云科技找到更接近区域客户和市场的路径。

*本文图片均来源于网络 

#智能相对论  Focusing on智能新产业新服务,这是智能的服务NO.248深度解读

此内容为【智能相对论】原创,

仅代表个人观点,未经授权,任何人不得以任何方式使用,包括转载、摘编、复制或建立镜像。

部分图片来自网络,且未核实版权归属,不作为商业用途,如有侵犯,请作者与我们联系。

•AI产业新媒体;

•澎湃新闻科技榜单月度top5;

•文章长期“霸占”钛媒体热门文章排行榜TOP10;

•著有《人工智能 十万个为什么》

•【重点关注领域】智能家电(含白电、黑电、智能手机、无人机等AIoT设备)、智能驾驶、AI+医疗、机器人、物联网、AI+金融、AI+教育、AR/VR、云计算、开发者以及背后的芯片、算法等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/182933.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式C语言自我修养《数据存储与指针》学习笔记

目录 一、数据类型和存储 1.大端模式和小端模式 2.有符号数和无符号数 二、数据对齐 1.为什么要数据对齐 2.结构体对齐 3.联合体对齐 三、数据的可移植性 四、 Linux内核中的size_t类型 五、typedef的使用 1. typedef的基本用法 2.使用typedef的优势 3. typedef的作用域 六…

【SQL篇】一、Flink动态表与流的关系以及DDL语法

文章目录 1、启动SQL客户端2、SQL客户端常用配置3、动态表和持续查询4、将流转为动态表5、用SQL持续查询6、动态表转为流7、时间属性8、DDL-数据库相关9、DDL-表相关 1、启动SQL客户端 启动Flink(基于yarn-session模式为例): /opt/module/f…

Java_类和对象详解

文章目录 前言简单认识类类定义和使用类的实例化引用的一些注意事项 类和对象的说明及关系this引用为什么要有this引用this应用this特性 构造方法构造特性及应用用this简化用idea编译器快捷创建构造 封装封装的概念访问限定符 封装的扩展-包包的概念导入包中的类自定义包常见的…

Skywalking介绍

一个优秀的项目,除了具有高拓展的架构、高性能的方案、高质量的代码之外,还应该在上线后具备多角度的监控功能。现在企业中的监控服务也有很多,Skywalking除了提供多维度、多粒度的监控之外,也提供了良好的图形化界面以及性能剖析…

LeetCode 面试题 16.17. 连续数列

文章目录 一、题目二、C# 题解 一、题目 给定一个整数数组,找出总和最大的连续数列,并返回总和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。…

DDD学习笔记

1)ddd: 软件复杂性的应对之道。 但是不是说:redis这种不会使用。 开发过程中,一直面临的一种复杂性。 是一种架构思想: 领域之间的组合。 让开发软件具有搭积木的感觉。 领域的核心是边界。 以领域划分为基础。 以通用语言为建设…

持续集成交付CICD:安装Jenkins Slave(从节点)

目录 一、实验 1.安装Jenkins Slave(从节点) 二、问题 1.salve节点启动jenkins报错 2.终止命令行后jenkins从节点状态不在线 一、实验 1.安装Jenkins Slave(从节点) (1)查看jenkins版本 Version 2.…

c语言进阶部分详解(《高质量C-C++编程》经典例题讲解及柔性数组)

上篇文章我介绍了介绍动态内存管理 的相关内容:c语言进阶部分详解(详细解析动态内存管理)-CSDN博客 各种源码大家可以去我的github主页进行查找:唔姆/比特学习过程2 (gitee.com) 今天便接“上回书所言”,来介绍《高质…

ElasticSearch 实现 全文检索 支持(PDF、TXT、Word、HTML等文件)通过 ingest-attachment 插件实现 文档的检索

一、Attachment 介绍 Attachment 插件是 Elasticsearch 中的一种插件,允许将各种二进制文件(如PDF、Word文档等)以及它们的内容索引到 Elasticsearch 中。插件使用 Apache Tika 库来解析和提取二进制文件的内容。通过使用 Attachment 插件&a…

Qt的事件

一、鼠标按下事件 //鼠标按下事件,获取屏幕位置,并显示,移动显示框 void Widget::mousePressEvent(QMouseEvent *event) {if(event->button() ! Qt::LeftButton){return ;}QPoint point event->pos();QPointF winPt event->…

Python学习-shutil模块和OS模块学习

shutil模块 针对文件的拷贝,删除,移动,压缩和解压操作 # 1.copyfileobj只能复制文件内容,无法复制权限#复制文件时,要选择自己有权限的目录执行操作,创建的文件会根据系统umask设定的参数来指定用户权限 s…

首发scitb包,一个为制作统计表格而生的R包

目前,本人写的第3个R包scitb包已经正式在R语言官方CRAN上线,scitb包是一个为生成专业化统计表格而生的R包。 可以使用以下代码安装 install.packages("scitb")scitb包对我而言是个很重要的R包,我的很多想法需要靠它做平台来实现&a…

项目实战:优化Servlet,把所有围绕Fruit操作的Servlet封装成一个Servlet

1、FruitServlet 这些Servlet都是围绕着Fruit进行的把所有对水果增删改查的Servlet放到一个Servlet里面,让tomcat实例化一个Servlet对象 package com.csdn.fruit.servlet; import com.csdn.fruit.dto.PageInfo; import com.csdn.fruit.dto.PageQueryParam; import c…

多级缓存之JVM进程缓存

1.什么是多级缓存 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: 请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 Redis缓存失效时&#xff0…

STM32笔记—DMA

目录 一、DMA简介 二、DMA主要特性 三、DMA框图 3.1 DMA处理 3.2 仲裁器 3.3 DMA通道 扩展: 断言: 枚举: 3.4 可编程的数据传输宽度、对齐方式和数据大小端 3.5 DMA请求映像 四、DMA基本结构 4.1 DMA_Init配置 4.2 实现DMAADC扫描模式 实现要求…

PMP考试都是什么题?

PMP考试都是选择题,180道选择题,单选170道,多选10道,告知答案选项数量。 这里分享一下PMP考试中的常见翻译问题,pmp干货可在文末获取。 1、题目中出现的“启动会议”或“启动大会”开工会议(kick-off mee…

康耐视深度学习ViDi-ViDi四大工具介绍与主要用途

Cognex ViDi 工具是一系列机器视觉工具,通过深度学习解决各种难以解决的挑战。虽然这些工具共享一个引擎,但它们在图像中寻找的内容不同。更具体地说,在分析单个点、单个区域或完整图像时,每个工具都有不同的侧重点。 Locate&…

极致性能优化:前端SSR渲染利器Qwik.js | 京东云技术团队

引言 前端性能已成为网站和应用成功的关键要素之一。用户期望快速加载的页面和流畅的交互,而前端框架的选择对于实现这些目标至关重要。然而,传统的前端框架在某些情况下可能面临性能挑战且存在技术壁垒。 在这个充满挑战的背景下,我们引入…

基础课18——智能客服系统架构

1.基础设施层 基础设施主要包括以下几点: 1. 硬件设施:包括服务器、存储设备、网络设备等,这是整个系统运行的物理基础。 2. 软件设施:包括操作系统、数据库管理系统、自然语言处理(NLP)工具和机器学习算法等,这些是…

Jmeter分布式压测 —— 易踩坑点

1、压测机 无论是从成本角度还是维护的难易方面,压测机的数量,适量就好。举个例子,8C16G的一台服务器,部署Jmeter后,根据我个人的测试比对数据,配置≤1500个线程数,最好。太多了性能损耗较大&a…