Python + WhisperX:解锁语音识别的高效新姿势

大家好,我是烤鸭:

   最近在尝试做视频的质量分析,打算利用asr针对声音判断是否有人声,以及识别出来的文本进行进一步操作。asr看了几个开源的,最终选择了openai的whisper,后来发现性能不行,又换了whisperX。这是一篇实战和代码为主的文章。

引言

OpenAI的Whisper是一款强大的自动语音识别(ASR)模型,它支持多语种识别,包括中文,且经过大量的多语言和多任务监督数据训练,具有出色的鲁棒性和准确性。Python作为一种功能强大的编程语言,其丰富的库和简洁的语法使其成为实现语音识别功能的理想选择。本文将介绍如何利用Python集成Whisper,实现高效的语音识别。

目前一天小千的视频调用,平均时长3分钟。显卡是4090,平均识别耗时30s以内,业务无压力。

Whisper模型简介

Whisper是一个开源的语音识别模型,它基于Transformer架构,通过从网络上收集的680,000小时多语言数据进行训练,能够实现对多种语言的准确识别。此外,该模型对口音、背景噪音和技术语言具有很好的鲁棒性,使得其在实际应用中具有广泛的应用前景。

WhisperX 地址:
https://github.com/m-bain/whisperX

安装环境

linux
显卡是 4090
cuda pytorch
ffmpeg

python 需要的依赖

pip install --no-cache-dir flask -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir ffmpeg-python -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir wheel -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir zhconv -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir numpy -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir openai-whisper -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir kafka-python -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir fastapi -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir uvicorn -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir psutil -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir gputil -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir requests -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir use-nacos -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir pyyaml -i https://mirrors.aliyun.com/pypi/simple
pip install --no-cache-dir rocketmq-client-python -i https://mirrors.aliyun.com/pypi/simple

预期的功能

我想实现的是单台机器性能打满,并行识别asr,接口可以无限制接收请求,异步返回结果。

接口层

使用的是 fastapi 框架

import concurrent.futures
import os
import timeimport ffmpeg
import platform
import uvicorn
import asyncio
import psutil
from fastapi import FastAPI, BackgroundTasks, HTTPException, status, Query
from fastapi.responses import JSONResponse
import GPUtil
import requests
import jsonfrom dict_time import TimedMap
from parse_video_param import VideoRequest
from parse_video_callback_param import VideoCallbackRequest
from api_result import ApiResult
from whisper_processor import video_process
from whisperX_processor20241119 import video_process_whisperX
from logging_config import KAFKA_LOGGER
from nacos_config20241119 import register_nacosapp = FastAPI()
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)  # 线程池
# 定义CPU使用率阈值
threshold_cpu_usage = 95  # 例如,你希望CPU使用率不超过95%
threshold_gpu_usage_MB = 2400  # 例如,你希望显存使用大小 MB
timed_map = TimedMap()@app.post("/xxxx-video/whisperx")
async def parse_video(request: VideoRequest, background_tasks: BackgroundTasks):if not request or not request.path:raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No video URL provided")print(f"parse_video, params:{request}")# 将处理任务添加到后台任务中,以便不阻塞主线程background_tasks.add_task(process_video_whisperx, request, background_tasks)# 立即返回处理中响应,告诉客户端请求已经被接收并正在处理api_result = ApiResult(1, "success", "", "")return JSONResponse(api_result.to_dict(), status_code=status.HTTP_200_OK)
# 异步函数来下载和处理视频
async def process_video_whisperx(request: VideoRequest, background_tasks: BackgroundTasks):def sync_process_video_whisperx(request):text = ''try:# 记录方法耗时start_time_single = time.time()# 下载视频并保存到临时文件url = request.pathchunk_size = request.chunk_size# 如果当前cpu使用率超过80%,就把该数据重新加到任务里# 获取当前CPU使用率cpu_usage = psutil.cpu_percent(interval=1, percpu=False)print(f"当前cpu利用率:{cpu_usage}")KAFKA_LOGGER.info(f"当前cpu利用率:{cpu_usage}")# 获取所有GPU的信息gpus = GPUtil.getGPUs()isGpuSuffiencent = True# 判断CPU使用率是否达到阈值if cpu_usage <= threshold_cpu_usage or isGpuSuffiencent:# 解析音频地址wavPath = getWav(url)print(f"mp3 url={wavPath}")# 不存在再去生成# 异步处理方法,解析音频这块可以忽略,也可以直接用视频地址if(not os.path.exists(wavPath)):(ffmpeg.input(url).output(wavPath, acodec='mp3').global_args('-loglevel', 'quiet').run())# 使用whisper处理音频text = process_audio_with_whisperx(wavPath, chunk_size)end_time_single = time.time()# 创建任务并添加到事件循环中,通知业务方asyncio.run(callback_task(request, text))print(f"视频地址:{url}, 函数执行耗时: {end_time_single - start_time_single}秒")KAFKA_LOGGER.info(f"视频地址:{url}, 函数执行耗时: {end_time_single - start_time_single}秒")# 清理临时文件os.remove(wavPath)else:print(f"当前cpu已超限,该视频重新加入队列:{url}")KAFKA_LOGGER.info(f"当前cpu已超限,该视频重新加入队列:{url}")# 暂停5秒time.sleep(5)# 重新加到队列里# 将处理任务添加到后台任务中,以便不阻塞主线程background_tasks.add_task(process_video_whisperx, request, background_tasks)except Exception as ex:print(f"sync_process_video error: {str(ex)}")KAFKA_LOGGER.error(f"sync_process_video error: {ex}")return textloop = asyncio.get_running_loop()# 使用线程池运行同步函数,避免阻塞异步事件循环return await loop.run_in_executor(executor, sync_process_video_whisperx, request)
# 获取文件路径
def getWav(input_video):try:# 判断系统是windows还是linuxoperating_system = platform.system()# 判断操作系统类型if operating_system == 'Windows':print("当前系统是Windows")audio_path = "C:\\Users\\xxx\\Downloads\\"else :audio_path = "/tmp/"# 从原始路径中获取文件名filename = os.path.basename(input_video)# 生成新文件的完整路径filename_without_extension = os.path.splitext(filename)[0]# 使用ffmpeg-python提取音频new_filename = os.path.join(audio_path, filename_without_extension) + ".mp3"except Exception as ex1:print("getWav ex:", str(ex1))return new_filename
# 音频解析
def process_audio_with_whisperx(audio_file_path: str, chunk_size: int) -> str:text = video_process_whisperX(audio_file_path, chunk_size)return text
# 异步回调
async def callback_task(request: VideoRequest, text: str):# 创建任务并添加到事件循环中task = asyncio.create_task(callback(request, text))# 等待任务完成await task
# 回调请求方法
async def callback(request: VideoRequest, text: str):# 目标URLurl = request.callback_url# JSON格式的参数data = {'id': request.id,'text': text,# 添加更多键值对...}# 设置一些键值对timed_map.set(request.path, json.dumps(data), timeout=1800)# 设置请求头,告诉服务器我们发送的是JSON数据headers = {'Content-Type': 'application/json'}# 设置超时时间,这里设置为5秒timeout = 5.0# 发送POST请求response = requests.post(url, data=json.dumps(data), headers=headers, timeout=timeout)print(f"url:{url},data: {json.dumps(data)},headers:{headers},response:{response}")# 检查请求是否成功if response.status_code == 200:# 请求成功,处理响应内容print("请求成功")print(response.json())  # 如果响应内容是JSON格式,可以直接解析else:# 请求失败,打印错误信息print(f"请求失败,状态码:{response.status_code}")print(response.text)  # 打印响应的文本内容
# 启动应用
if __name__ == "__main__":register_nacos()uvicorn.run(app, host="0.0.0.0", port=5000)    

whisperX

import whisperx
from whisperx.asr import FasterWhisperPipeline
import time
import torch
import gc
import osENV = os.environ.get('ENV', 'development')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if ENV == 'production':batch_size = 16compute_type = "float16"model_name = "large-v2"
else:# reduce if low on GPU membatch_size = 4# compute_type = "float16"  # change to "int8" if low on GPU mem (may reduce accuracy)# change to "int8" if low on GPU mem (may reduce accuracy)compute_type = "int8"model_name = "medium"
class WhisperXProcessor:fast_model: FasterWhisperPipelinedef loadModel(self):# 1. Transcribe with original whisper (batched)self.fast_model = whisperx.load_model("medium", device.type, compute_type=compute_type)print("模型加载完成")def asr(self, filePath: str, chunk_size: int):print(f'asr start filePath:{filePath}')start = time.time()audio = whisperx.load_audio(filePath)result = self.fast_model.transcribe(audio, batch_size=batch_size, chunk_size = chunk_size)print(result)end = time.time()print('识别使用的时间:', end - start, 's')torch.cuda.empty_cache()gc.collect()return resultdef video_process_whisperX(audio_path, chunk_size):app = WhisperXProcessor()app.loadModel()text = app.asr(audio_path, chunk_size)return text

结果验证

发送请求

curl -XPOST 'http://localhost:5000/xxxx-video/whisperX' -H 'Content-Type: application/json' -d '{"id":1,"path":"https://vc16-bd1-pl-agv.autohome.com.cn/video-26/0A33363922E51BDE/2025-02-10/FC68CC971BB8B9A46F15C4841F4F2CE2-200-wm.mp4?key=F77E8D3251C4560FA47E36563A5D5668&time=1739187850","callback_url":"http://localhost:8088/xxx/demo/testParseVideo"}'

结果日志,2分钟的视频,大概用了60s。

在这里插入图片描述

文章参考

ASR强力模型「Whisper」:解密Whisper

Python实现语音识别(whisperX)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/18381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红队视角出发的k8s敏感信息收集——持久化存储与数据泄露

在Kubernetes集群中&#xff0c;持久化存储卷如同数据的保险箱&#xff0c;承载着应用运行所必需的各类敏感信息。然而&#xff0c;从红队视角出发&#xff0c;这些存储卷也可能成为攻击者觊觎的目标。通过巧妙地利用配置不当或已知漏洞&#xff0c;攻击者能够从中收集到包括密…

微信服务号推送消息

这里如果 没有 就需要点新的功能去申请一下 申请成功之后就可以设置模版消息 推送到用户接受的页面是 需要后端调用接口 传递token 发送给客户

[Spring] Spring常见面试题

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

Edge浏览器清理主页

我们都知道&#xff0c;Microsoft Edge浏览器是微软创造的搜索浏览器&#xff0c;Windows10、11自带。但是你可以看到&#xff0c;每次你打开Edge浏览器的时候都可以看到许多的广告&#xff0c;如图&#xff1a; 导致打开Edge浏览器的时候会遭受卡顿&#xff0c;广告骚扰&#…

【编写UI自动化测试集】Appium+Python+Unittest+HTMLRunner​

简介 获取AppPackage和AppActivity 定位UI控件的工具 脚本结构 PageObject分层管理 HTMLTestRunner生成测试报告 启动appium server服务 以python文件模式执行脚本生成测试报告 下载与安装 下载需要自动化测试的App并安装到手机 获取AppPackage和AppActivity 方法一 …

Apollo 9.0 参考线生成器 -- ReferenceLineProvider

文章目录 1. Planning 与 Routing交互1.1 路由请求RoutingRequest1.2 路由响应RoutingResponse1.3 换道过程 2. 创建参考线线程2.1 创建参考线生成器2.2 启动参考线线程 3. 参考线周期生成3.1 创建参考线3.2 更新参考线 4. 参考线平滑4.1 设置中间点anchor points4.2 平滑算法平…

游戏引擎学习第103天

仓库:https://gitee.com/mrxiao_com/2d_game_2 回顾bug 接下来回顾一下这个bug的具体情况。当前是一个调试视图&#xff0c;我们并不是直接在调试视图下工作&#xff0c;而是在进行相关的调试。展示了地图&#xff0c;这里是环境贴图&#xff0c;上面是正在使用的环境贴图&am…

论文学习记录之《CLR-VMB》

目录 一、基本介绍 二、介绍 三、方法 3.1 FWI中的数据驱动方法 3.2 CLR-VMB理论 3.3 注意力块 四、网络结构 4.1 网络架构 4.2 损失函数 五、实验 5.1 数据准备 5.2 实验设置 5.3 训练和测试 5.4 定量分析 5.5 CLR方案的有效性 5.6 鲁棒性 5.7 泛化性 六、讨…

USART串口协议

USART串口协议 文章目录 USART串口协议1. 通信接口2.串口通信2.1硬件电路2.2电平标准2.3串口参数及时序&#xff08;软件部分&#xff09; 3.USART串口外设3.1串口外设3.2USART框图3.3USART基本结构3.4数据帧 4.输入电路4.1起始位侦测4.2数据采样 5.波特率发生器6.相关函数介绍…

【线性代数】1行列式

1. 行列式的概念 行列式的符号表示: 行列式的计算结果:一个数 计算模型1:二阶行列式 二阶行列式: 三阶行列式: n阶行列式: 🍎计算行列式 计算模型2:上三角形行列式 上三角形行列式特征:主对角线下皆为0。 上三角形行列式: 化上三角形通用方法:主对角线下,…

vite让每个scss文件自动导入某段内容

写了如下一个scss函数&#xff0c;希望自动导入到每个scss文件里面 vite.config.ts里面如下配置 import fs from fsconst filePath resolve(__dirname, ./src/assets/css/index.scss);const Minxcss fs.readFileSync(filePath, utf8); css: {preprocessorOptions: {scss: {…

【广州大学主办,发表有保障 | IEEE出版,稳定EI检索,往届见刊后快至1个月检索】第二届电气技术与自动化工程国际学术会议 (ETAE 2025)

第二届电气技术与自动化工程国际学术会议 (ETAE 2025) The 2nd International Conference on Electrical Technology and Automation Engineering 大会官网&#xff1a;http://www.icetae.com/【更多详情】 会议时间&#xff1a;2025年4月25-27日 会议地点&#xff1a…

Java面试第一山!《集合》!

一、引言 在 Java 编程的世界里&#xff0c;数据的存储和处理是非常重要的环节。Java 集合框架就像是一个功能强大的工具箱&#xff0c;为我们提供了各种各样的数据结构来高效地存储和操作数据。今天&#xff0c;跟随小编一起来深入了解 Java 集合框架&#xff0c;这不仅有助于…

APP端弱网模拟与网络测试:如何确保应用在各种网络环境下稳定运行

随着智能手机的普及&#xff0c;APP的网络性能成为用户体验的关键因素之一。尤其是在弱网环境下&#xff0c;应用的表现可能严重影响用户的满意度。因此&#xff0c;APP端的网络测试&#xff0c;尤其是弱网模拟&#xff0c;成为了提升产品质量和用户体验的重要环节。 当前APP网…

使用verilog 实现 cordic 算法 ----- 旋转模式

1-设计流程 ● 了解cordic 算法原理&#xff0c;公式&#xff0c;模式&#xff0c;伸缩因子&#xff0c;旋转方向等&#xff0c;推荐以下链接视频了解 cordic 算法。哔哩哔哩-cordic算法原理讲解 ● 用matlab 或者 c 实现一遍算法 ● 在FPGA中用 verilog 实现&#xff0c;注意…

【Linux】Socket编程—TCP

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…

分布式技术

一、为什么需要分布式技术&#xff1f; 1. 科学技术的发展推动下 应用和系统架构的变迁&#xff1a;单机单一架构迈向多机分布式架构 2. 数据大爆炸&#xff0c;海量数据处理场景面临问题 二、分布式系统概述 三、分布式、集群 四、负载均衡、故障转移、伸缩性 负载均衡&a…

python后端调用Deep Seek API

python后端调用Deep Seek API 需要依次下载 ●Ollama ●Deepseek R1 LLM模型 ●嵌入模型nomic-embed-text / bge-m3 ●AnythingLLM 参考教程&#xff1a; Deepseek R1打造本地化RAG知识库:安装部署使用详细教程 手把手教你&#xff1a;deepseek R1基于 AnythingLLM API 调用本地…

优选驾考小程序

第2章 系统分析 2.1系统使用相关技术分析 2.1.1Java语言介绍 Java语言是一种分布式的简单的 开发语言&#xff0c;有很好的特征&#xff0c;在安全方面、性能方面等。非常适合在Internet环境中使用&#xff0c;也是目前企业级运用中最常用的一个编程语言&#xff0c;具有很大…

02、QLExpress从入门到放弃,相关API和文档

QLExpress从入门到放弃,相关API和文档 一、属性开关 public class ExpressRunner {private boolean isTrace;private boolean isShortCircuit;private boolean isPrecise; }/*** 是否需要高精度计算*/ private boolean isPrecise false;高精度计算在会计财务中非常重要&…