JVM-虚拟机的故障处理与调优案例分析

案例1:大内存硬件上的程序部署策略

一个15万PV/日左右的在线文档类型网站最近更换了硬件系统,服务器的硬件为四路志强处理器、16GB物理内存,操作系统为64位CentOS 5.4,Resin作为Web服务器。整个服务器暂时没有部署别的应用,所有硬件资源都可以提供给这访问量并不算太大的文档网站使用。软件版本选用的是64位的JDK 5,管理员启用了一个虚拟机实例,使用-Xmx和-Xms参数将Java大小固定在12GB
监控服务器运行状况后发现网站失去响应是由垃圾收集停顿所导致的,在该系统软硬件条件下,HotSpot虚拟机是以服务端模式运行,默认使用的是吞吐量优先收集器,回收12GB的Java堆,一次FullGC的停顿时间就高达14秒。由于程序设计的原因,访问文档时会把文档从磁盘提取到内存中,导致内存中出现很多由文档序列化产生的大对象,这些大对象大多在分配时就直接进入了老年代没有在Minor GC中被清理掉。这种情况下即使有12GB的堆,内存也很快会被消耗殆尽。
主要问题:过大的堆内存进行回收时带来的长时间的停顿
单体应用在较大内存的硬件上主要的
部署方式
有两种:
1)通过一个单独的Java虚拟机实例来管理大量的Java堆内存。
使用单个Java虚拟机实例来管理大内存,还需要考虑下面可能面临的问题:
Ⅰ回收大块堆内存而导致的长时间停顿,自从G1收集器的出现,增量回收得到比较好的应用
Ⅱ大内存必须有64位Java虚拟机的支持,但由于压缩指针、处理器缓存行容量(Cache Line)等因
素,64位虚拟机的性能测试结果普遍略低于相同版本的32位虚拟机。
Ⅲ必须保证应用程序足够稳定,因为这种大型单体应用要是发生了堆内存溢出,几乎无法产生堆转
储快照
(要产生十几GB乃至更大的快照文件),哪怕成功生成了快照也难以进行分析;如果确实出了
问题要进行诊断,可能就必须应用JMC这种能够在生产环境中进行的运维工具
2)同时使用若干个Java虚拟机,建立逻辑集群来利用硬件资源。
做法是在一台物理机器上启动多个应用服务器进程,为每个服务器进程分配不同端口,然后在前端搭建一个负载均衡器,以反向代理的方式来分配访问请求。
缺点:
Ⅰ节点竞争全局的资源,最典型的就是磁盘竞争,各个节点如果同时访问某个磁盘文件的话(尤其是并发写操作容易出现问题),很容易导致I/O异常。
Ⅱ很难最高效率地利用某些资源池,譬如连接池,一般都是在各个节点建立自己独立的连接池,这样有可能导致一些节点的连接池已经满了,而另外一些节点仍有较多空余。尽管可以使用集中式的JNDI来解决,但这个方案有一定复杂性并且可能带来额外的性能代价。
解决方案:
调整为建立5个32位JDK的逻辑集群,每个进程按2GB内存计算(其中堆固定为1.5GB),占用了10GB内存。另外建立一个Apache服务作为前端均衡代理作为访问门户。考虑到用户对响应速度比较关心,并且文档服务的主要压力集中在磁盘和内存访问,处理器资源敏感度较低,因此改为CMS收集器进行垃圾回收。

案例2:集群间同步导致的内存溢出

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP小型机,应用中间件是WebLogic9.2,每台机器启动了3个WebLogic实例,构成一个6个节点的亲合式集群。由于是亲合式集群,节点之间没有进行Session同步,但是有一些需求要实现部分数据在各个节点间共享。最开始这些数据是存放在数据库中的,但由于读写频繁、竞争很激烈,性能影响较大,后面使用JBossCache构建了一个全局缓存。全局缓存启用后,服务正常使用了一段较长的时间。但在最近不定期出现多次的内存溢出问题。
最近一次溢出之后,堆转储快照里面存在着大量的org.jgroups.protocols.pbcast.NAKACK对象
JBossCache是基于自家的JGroups进行集群间的数据通信,JGroups使用协议栈的方式来实现收发数据包的各种所需特性自由组合,数据包接收和发送时要经过每层协议栈的up()和down()方法,其中的NAKACK栈用于保障各个包的有效顺序以及重发。
由于信息有传输失败需要重发的可能性,在确认所有注册在GMS(Group Membership Service)的节点都收到正确的信息前,发送的信息必须在内存中保留。当网络情况不能满足传输要求时,重发数据在内存中不断堆积,很快就产生了内存溢出。

案例3:堆外内存导致的溢出错误

基于B/S的电子考试系统,为了实现客户端能实时地从服务器端接收考试数据,系统使用了逆向AJAX技术(也称为Comet或者Server Side Push),选用CometD 1.1.1作为服务端推送框架,服务器是Jetty 7.1.4,硬件为一台很普通PC机,Core i5 CPU,4GB内存,运行32位Windows操作系统。
问题:服务端不定时抛出内存溢出异常,加入-XX:+HeapDumpOnOutOfMemoryError参数,居然也没有任何反应,抛出内存溢出异常时什么文件都没有产生。无奈之下只好挂着jstat紧盯屏幕,发现垃圾收集并不频繁,Eden区、Survivor区、老年代以及方法区的内存全部都很稳定,压力并不大,但就是照样不停抛出内存溢出异常。在内存溢出后从系统日志中找到异常堆栈
在这里插入图片描述
问题出在直接内存,虚拟机虽然会对直接内存进行回收,但是直接内存却不能像新生代、老年代那样,发现空间不足了就主动通知收集器进行垃圾回收,它只能等待老年代满后Full GC出现后,“顺便”帮它清理掉内存的废弃对
象。否则就不得不一直等到抛出内存溢出异常时,先捕获到异常
从实践经验的角度出发,在
处理小内存或者32位的应用问题
时,除了Java堆和方法区之外,我们注意到下面这些区域还会占用较多的内存,这里所有的内存总和受到操作系统进程最大内存的限制:
直接内存:可通过-XX:MaxDirectMemorySize调整大小,内存不足时抛出OutOf-MemoryError或
者OutOfMemoryError:Direct buffer memory。
线程堆栈:可通过-Xss调整大小,内存不足时抛出StackOverflowError(如果线程请求的栈深度大于虚拟机所允许的深度)或者OutOfMemoryError(如果Java虚拟机栈容量可以动态扩展,当栈扩展时无法申请到足够的内存)。
Socket缓存区:每个Socket连接都Receive和Send两个缓存区,分别占大约37KB和25KB内存,连接多的话这块内存占用也比较可观。如果无法分配,可能会抛出IOException:Too many open files异常。
JNI代码:如果代码中使用了JNI调用本地库,那本地库使用的内存也不在堆中,而是占用Java虚拟机的本地方法栈和本地内存的。

案例4:外部命令导致系统缓慢

一个数字校园应用系统,运行在一台四路处理器的Solaris 10操作系统上,中间件为GlassFish服务器。系统在做大并发压力测试的时候,发现请求响应时间比较慢,通过操作系统的mpstat工具发现处理器使用率很高,但是系统中占用绝大多数处理器资源的程序并不是该应用本身。
**原因:发现最消耗处理器资源的竟然是“fork”**系统调用。众所周知,“fork”系统调用是Linux用来产生新进程的,在Java虚拟机中,用户编写的Java代码通常最多只会创建新的线程,不应当有进程的产生,这又是个相当不正常的现象。
每个用户请求的处理都需要执行一个外部Shell脚本来获得系统的一些信息。**执行这个Shell脚本是通过Java的Runtime.getRuntime().exec()**方法来调用的。这种调用方式可以达到执行Shell脚本的目的,但是它在Java虚拟机中是非常消耗资源的操作,即使外部命令本身能很快执行完毕,频繁调用时创建进程的开销也会非常可观。Java虚拟机执行这个命令的过程是首先复制一个和当前虚拟机拥有一样环境变量的进程,再用这个新的进程去执行外部命令,最后再退出这个进程。如果频繁执行这个操作,系统的消耗必然会很大,而且不仅是处理器消耗,内存负担也很重。
**解决办法:**去掉这个Shell脚本执行的语句

案例5:服务器虚拟机进程崩溃

一个基于B/S的MIS系统,硬件为两台双路处理器、8GB内存的HP系统,服务器是WebLogic9.2(与第二个案例中那套是同一个系统)。正常运行一段时间后,最近发现在运行期间频繁出现集群节点的虚拟机进程自动关闭的现象,留下了一个hs_err_pid###.log文件后,虚拟机进程就消失了,两台物理机器里的每个节点都出现过进程崩溃的现象。从系统日志中注意到,每个节点的虚拟机进程在崩溃之前,都发生过大量相同的异常
在这里插入图片描述
这是一个远端断开连接的异常,通过系统管理员了解到系统最近与一个OA门户做了集成,在MIS系统工作流的待办事项变化时,要通过Web服务通知OA门户系统,把待办事项的变化同步到OA门户之中。通过SoapUI测试了一下同步待办事项的几个Web服务,发现调用后竟然需要长达3分钟才能返回,并且返回结果都是超时导致的连接中断。
由于MIS系统的用户多,待办事项变化很快,为了不被OA系统速度拖累,使用了异步的方式调用Web服务,但由于两边服务速度的完全不对等,时间越长就累积了越多Web服务没有调用完成,导致在等待的线程和Socket连接越来越多,最终超过虚拟机的承受能力后导致虚拟机进程崩溃。通知OA门户方修复无法使用的集成接口,并将异步调用改为生产者/消费者模式的消息队列实现后,系统恢复正常

案例6:不恰当数据结构导致内存占用过大

一个后台RPC服务器,使用64位Java虚拟机,内存配置为-Xms4g-Xmx8g-Xmn1g,使用ParNew加CMS的收集器组合。平时对外服务的Minor GC时间约在30毫秒以内,完全可以接受。但业务上需要每10分钟加载一个约80MB的数据文件到内存进行数据分析,这些数据会在内存中形成超过100万个HashMap<Long,Long>Entry,在这段时间里面Minor GC就会造成超过500毫秒的停顿
产生问题的根本原因是用HashMap<Long,Long>结构来存储数据文件空间效率太低了
我们具体分析一下HashMap空间效率,在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之后,就分别具有8字节的Mark Word、8字节的Klass指针,再加8字节存储数据的long值。然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头,然后一个8字节的next字段和4字节的int型的hash字段,为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMapRef(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%,这确实太低了

案例7:由Windows虚拟内存导致的长时间停顿

有一个带心跳检测功能的GUI桌面程序,每15秒会发送一次心跳检测信号,如果对方30秒以内都没有信号返回,那就认为和对方程序的连接已经断开。
问题:
程序上线后发现心跳检测有误报的可能,查询日志发现误报的原因是程序会偶尔出现间隔约一分钟的时间完全无日志输出,处于停顿状态
出现原因:当它最小化的时候,资源管理中显示的占用内存大幅度减小,但是虚拟内存则没有变化,因此怀疑程序在最小化时它的工作内存被自动交换到磁盘的页面文件之中了,这样发生垃圾收集时就有可能因为恢复页面文件的操作导致不正常的垃圾收集停顿。
**解决方法:**可以加入参数“-Dsun.awt.keepWorkingSetOnMinimize=true”来解决。这个参数在许多AWT的程序上都有应用,例如JDK(曾经)自带的VisualVM,启动配置文件中就有这个参数,保证程序在恢复最小化时能够立即响应。在这个案例中加入该参数,问题马上得到解决。

案例8:由安全点导致长时间停顿

有一个比较大的承担公共计算任务的离线HBase集群,运行在JDK 8上,使用G1收集器。每天都有大量的MapReduce或Spark离线分析任务对其进行访问,同时有很多其他在线集群Replication过来的数据写入,因为集群读写压力较大,而离线分析任务对延迟又不会特别敏感,所以将-XX:MaxGCPauseMillis参数设置到了500毫秒。不过运行一段时间后发现垃圾收集的停顿经常达到3秒以上,而且实际垃圾收集器进行回收的动作就只占其中的几百毫秒
user:进程执行用户态代码所耗费的处理器时间。
·sys:进程执行核心态代码所耗费的处理器时间。
·real:执行动作从开始到结束耗费的时钟时间。
请注意,前面两个是处理器时间,而最后一个是时钟时间,它们的区别是处理器时间代表的是线程占用处理器一个核心的耗时计数,而时钟时间就是现实世界中的时间计数。如果是单核单线程的场景下,这两者可以认为是等价的,但如果是多核环境下,同一个时钟时间内有多少处理器核心正在工作,就会有多少倍的处理器时间被消耗和记录下来
问题:日志中的2255毫秒自旋(Spin)时间就是指由于部分线程已经走到了安全点,但还有一些特别慢的线程并没有到,所以垃圾收集线程无法开始工作,只能空转(自旋)等待
**原因及解决方法:**最终查明导致这个问题是HBase中一个连接超时清理的函数,由于集群会有多个MapReduce或Spark任务进行访问,而每个任务又会同时起多个Mapper/Reducer/Executer,其每一个都会作为一个HBase的客户端,这就导致了同时连接的数量会非常多。更为关键的是,清理连接的索引值就是int类型,所以这是一个可数循环,HotSpot不会在循环中插入安全点。当垃圾收集发生时,如果RpcServer的Listener线程刚好执行到该函数里的可数循环时,则必须等待循环全部跑完才能进入安全点,此时其他线程也必须一起等着,所以从现象上看就是长时间的停顿。找到了问题,解决起来就非常简单了,把循环索引的数据类型从int改为long即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/187597.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构-图的课后习题(2)

题目要求&#xff1a; 对于下面的这个无向网&#xff0c;给出&#xff1a; 1.“深度优先搜索序列”&#xff08;从V1开始&#xff09; 2.“广度优先序列”&#xff08;从V1开始&#xff09; 3.“用Prim算法求最小生成树” 代码实现&#xff1a; 1.深度优先搜索&#xff1a…

AI由许多不同的技术组成,其中一些最核心的技术如下

AI由许多不同的技术组成&#xff0c;其中一些最核心的技术包括&#xff1a; 机器学习&#xff1a;这是一种让计算机从数据中学习的技术&#xff0c;它可以根据已有的数据预测未来的趋势和行为。机器学习包括监督学习、无监督学习和强化学习等多种类型。深度学习&#xff1a;这…

Java-多态

1. 多态 1.1 多态的概念 多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。 1.2 多态实现条件 在java中要实现多态&#xff0c;必须要满足如下几个条件&#xff0c;缺一不…

C语言--汉诺塔【内容超级详细】

今天与大家分享一下如何用C语言解决汉诺塔问题。 目录 一.前言 二.找规律⭐ 三.总结⭐⭐⭐ 四.代码实现⭐⭐ 一.前言 有一部很好看的电影《猩球崛起》⭐&#xff0c;说呀&#xff0c;人类为了抗击癌症发明了一种药物&#x1f357;&#xff0c;然后给猩猩做了实验&#xff0…

LeetCode(4)删除有序数组中的重复项 II【数组/字符串】【中等】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 80. 删除有序数组中的重复项 II 1.题目 给你一个有序数组 nums &#xff0c;请你** 原地** 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数…

Conda executable is not found 三种问题解决

如果在PyCharm中配置Python解释器时显示“conda executable is not found”错误消息&#xff0c;这意味着PyCharm无法找到您的Conda可执行文件。您可以按照以下步骤解决此问题&#xff1a; 1.方法一 确认Conda已正确安装。请确保您已经正确安装了Anaconda或Miniconda&#xff…

前端-第一部分-HTML

一.初识HTML 1.1 HTML 简介 HTML 全称为 HyperText Mark-up Language&#xff0c;翻译为超文本标签语言&#xff0c;标签也称作标记或者元素。HTML 是目前网络上应用最为广泛的技术之一&#xff0c;也是构成网页文档的主要基石之一。HTML文本是由 HTML 标签组成的描述性文本&a…

Hadoop架构、Hive相关知识点及Hive执行流程

Hadoop架构 Hadoop由三大部分组成:HDFS、MapReduce、yarn HDFS&#xff1a;负责数据的存储 其中包括&#xff1a; namenode&#xff1a;主节点&#xff0c;用来分配任务给从节点 secondarynamenode&#xff1a;副节点&#xff0c;辅助主节点 datanode&#xff1a;从节点&#x…

评国青、优青、杰青,到底需要什么级别的文章?五篇代表作如何选?

一到年底就听同事们讨论到底申报“杰青”、“优青”还是“国青”&#xff0c;那么&#xff0c;“杰青”到底是什么呢&#xff1f;它和“优青”、“国青”又有什么区别呢&#xff1f; 杰青&#xff0c;全称“国家杰出青年基金获得者”&#xff0c;是国家自然科学基金里人才资助…

WAF入侵防御系统标准检查表

软件开发全文档获取&#xff1a;进主页

pyOCD

pyOCD 目录结构

在 Arduino IDE 2.0 中安装 ESP32 板(Windows、Mac OS X、Linux)

有一个新的 Arduino IDE——Arduino IDE 2.0&#xff08;测试版&#xff09;。在本教程中&#xff0c;您将学习如何在 Arduino IDE 2.0 中安装 ESP32 板并将代码上传到板。本教程与 Windows、Mac OS X 和 Linux 操作系统兼容。 据 Arduino 网站称&#xff1a;“ Arduino IDE 2.…

机器学习---多分类SVM、支持向量机分类

1. 多分类SVM 1.1 基本思想 Grammer-singer多分类支持向量机的出发点是直接用超平面把样本空间划分成M个区域&#xff0c;其 中每个区域对应一个类别的输入。如下例&#xff0c;用从原点出发的M条射线把平面分成M个区域&#xff0c;下图画 出了M3的情形&#xff1a; 1.2 问题…

局域网内部服务器访问外部网络

​ 一、环境说明 如下图所示&#xff0c;局域网1中的服务器是可以访问外网的&#xff0c;局域网2中的服务器发出的数据包经过中间路由可以到达局域网1中的服务器。现在有一种需求需要使局域网2中的服务器也要能访问外网&#xff0c;这里考虑采用如下方法来实现。 ​​ 二、软…

MySQL | 数据库的表的增删改查【进阶】

MySQL | 数据库的表的增删改查【进阶】 文章目录 MySQL | 数据库的表的增删改查【进阶】系列文章目录本节目标&#xff1a;数据库约束约束类型NULL约束UNIQUE&#xff1a;唯一约束DEFAULT&#xff1a;默认值PRIMARY KEY&#xff1a;主键FOREIGN KEY&#xff1a;外键CHECK 表的设…

JSON可视化管理工具JSON Hero

本文软件由网友 zxc 推荐&#xff1b; 什么是 JSON Hero &#xff1f; JSON Hero 是一个简单实用的 JSON 工具&#xff0c;通过简介美观的 UI 及增强的额外功能&#xff0c;使得阅读和理解 JSON 文档变得更容易、直观。 主要功能 支持多种视图以便查看 JSON&#xff1a;列视图…

网易云音乐未登录接口返回301

网易云音乐 NodeJS 版 API (neteasecloudmusicapi.js.org) 上面是网易云音乐的官方API接口文档 当我调用接口发送请求的时候部分接口数据是需要登录之后进行获取的&#xff0c;但是当我发送请求的时候原生js项目中的跨端问题是比较难解决的。 遇到的问题&#xff1a;跨端请求…

启动Docker服务后显示Docker Engine stopped

1、重新启动Docker服务&#xff1a;打开Windows服务管理器&#xff08;可以在开始菜单中搜索&#xff09;&#xff0c;找到"Docker Desktop Service"或类似命名的服务&#xff0c;右键单击并选择"重启"。稍等片刻&#xff0c;看看是否重新启动成功 2、尝试…

「我在淘天做技术」音视频技术及其在淘宝内容业务中的应用

作者&#xff1a;李凯 一、前言 近年来&#xff0c;内容电商似乎已经充分融入到人们的生活中&#xff1a;在闲暇时间&#xff0c;我们已经习惯于拿出手机&#xff0c;从电商平台的直播间、或者短视频链接下单自己心仪的商品。 尽管优质的货品、实惠的价格、精致的布景、有趣的…

最新宝塔面板第三方云端站点程序源码/第三方宝塔面板PHP源码/全开源ThinkPHP框架

源码简介&#xff1a; 实现宝塔面板第三方云端站点程序源码,这个是第三方宝塔面板 btcloud PHP源码&#xff0c;它还有云端使用记录、IP黑白名单、定时任务等功能。 这是一个使用PHP开发的宝塔面板第三方云端站点程序。 您可以利用此程序搭建属于自己的宝塔面板第三方云端&a…