深度学习 python opencv 动物识别与检测 计算机竞赛

文章目录

  • 0 前言
  • 1 深度学习实现动物识别与检测
  • 2 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 3 YOLOV5
    • 3.1 网络架构图
    • 3.2 输入端
    • 3.3 基准网络
    • 3.4 Neck网络
    • 3.5 Head输出层
  • 4 数据集准备
    • 4.1 数据标注简介
    • 4.2 数据保存
  • 5 模型训练
    • 5.1 修改数据配置文件
    • 5.2 修改模型配置文件
    • 5.3 开始训练模型
  • 6 实现效果
    • 6.1图片效果
    • 6.2 视频效果
    • 6.3 摄像头实时效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 深度学习实现动物识别与检测

学长实现的动态检测效果,精度还是非常高的!
在这里插入图片描述

2 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

2.3 激活函数

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

3 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

3.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

3.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

3.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

3.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

3.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述

相关代码

  class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid

4 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

4.1 数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

4.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

5 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

5.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为animal_data.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,这里识别有6种动物,所以这里填写6;最后填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

5.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

5.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

6 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI

#部分代码from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_animal(object):def setupUi(self, Win_animal):Win_animal.setObjectName("Win_animal")Win_animal.resize(1107, 868)Win_animal.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_animal)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))QtCore.QMetaObject.connectSlotsByName(Win_animal)

6.1图片效果

在这里插入图片描述

6.2 视频效果

在这里插入图片描述

6.3 摄像头实时效果

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/188058.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day26力扣打卡

打卡记录 搜索旋转排序数组&#xff08;二分&#xff09; 链接 class Solution {int findMin(vector<int> &nums) {int left -1, right nums.size() - 1; // 开区间 (-1, n-1)while (left 1 < right) { // 开区间不为空int mid left (right - left) / 2;if…

Python语法基础(字符串 列表 元组 字典 集合)

目录 字符串(str)字符串的创建特殊情况字符串的转义字符字符串的运算符字符串常用方法求字符串长度去掉多余空格是否包含某子串分割字符串合并字符串替换字符串统计统计字符串出现的次数 练习&#xff1a;判断字符串是否为回文串 列表(list)列表的创建列表常用方法遍历列表列表…

概念解析 | Richardson-Lucy去卷积算法

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:Richardson-Lucy去模糊算法 Richardson-Lucy去模糊算法:重现图像的真实面目 Blind deconvolution by means of the Richardson–Lucy algorithm 背景介绍 在图像处理中,图像获取…

JVM之jmap java内存映射工具

jmap java内存映射工具 1、jmap jdk安装后会自带一些小工具&#xff0c;jmap命令(Memory Map for Java)是其中之一。主要用于打印指定Java进程(或核 心文件、远程调试服务器)的共享对象内存映射或堆内存细节。 jmap命令可以获得运行中的jvm的堆的快照&#xff0c;从而可以离…

多维时序 | MATLAB实现SOM-BP自组织映射结合BP神经网络的多变量时间序列预测

多维时序 | MATLAB实现SOM-BP自组织映射结合BP神经网络的多变量时间序列预测 目录 多维时序 | MATLAB实现SOM-BP自组织映射结合BP神经网络的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现SOM-BP自组织映射结合BP神经网络的多变量时…

Install Docker in Linux

Docker官网链接: https://docs.docker.com/ 1.确定Linux版本 新版本的Docker对Linux系统版本有一定的要求。如果Linux的发行版系统是centOS&#xff0c;安装最新版的docker需要centOS 7以上的系统。 在Docker安装帮助页面查看支持的系统版本。 Docker帮助页面:https://docs…

YOLOv8-seg改进:复现HIC-YOLOv5,HIC-YOLOv8-seg助力小目标分割

🚀🚀🚀本文改进:HIC-YOLOv8-seg:1)添加一个针对小物体的额外预测头,以提供更高分辨率的特征图2)在backbone和neck之间采用involution block来增加特征图的通道信息;3)在主干网末端加入 CBAM 的注意力机制; 🚀🚀🚀HIC-YOLOv8-seg小目标分割检测&复杂场景…

开源的全能维护 U 盘工具:Ventoy

开源的全能维护 U 盘工具&#xff1a;Ventoy 本篇文章聊聊迄今为止&#xff0c;我用着最舒服的一款开源 U 盘启动工具&#xff0c;Ventoy。 写在前面 好久不见&#xff0c;接下来计划写一个比较连续的内容&#xff0c;就先从最小的处着手吧。 经过长久的折腾&#xff0c;除…

城市内涝积水的原因有哪些?万宾科技内涝积水监测仪工作原理

一旦有暴雨预警出现多地便会立即响应&#xff0c;以防城市内涝问题出现。随着人口迁移&#xff0c;越来越多的人口涌入城市之中&#xff0c;为了完善城市基础设施建设&#xff0c;城市应急管理部门对内涝的监测越来越严格&#xff0c;在信息化时代&#xff0c;城市管理也趋向于…

HarmonyOS应用开发-ArkTS基础知识

作者&#xff1a;杨亮Jerry 作为多年的大前端程序开发工作者&#xff0c;就目前的形式&#xff0c;个人浅见&#xff0c;在未来3-5年&#xff0c;移动端依旧是Android系统和iOS系统的天下。不过基于鸿蒙系统的应用开发还是值得我们去花点时间去了解下的&#xff0c;阅读并实践官…

人工智能基础——Python:Pillow与图像处理

人工智能的学习之路非常漫长&#xff0c;不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心&#xff0c;我为大家整理了一份600多G的学习资源&#xff0c;基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得…

【解决问题】---- 解决 avue-crud 表格勾选数据翻页后界面保持选中

1. 错误预览 第一页选择【7、8、9、10】 直接点击第三页未进行选择 直接点击第四页未进行选择 2. 问题总结 通过测试可以看到&#xff0c;页面的选择项会影响到其他页面的选择&#xff1b;点击保存&#xff0c;返回的数据却是真真选择的数据&#xff1b;数据在选择渲染…

2023网络钓鱼状况报告:ChatGPT等工具致网络钓鱼电子邮件数量激增1265%

近日&#xff0c;SlashNext发布了《2023年网络钓鱼状况报告》&#xff0c;报告显示&#xff1a;自ChatGPT于2022年11月推出以来&#xff0c;网络钓鱼电子邮件数量激增1265%&#xff0c;这标志着网络犯罪依托于人工智能进入了一个新的时代。 该报告深入分析了2022年第四季度至2…

jQuery实现二级菜单

jQuery怎么实现二级菜单呢&#xff1f;让我为大家演示一个例子&#xff01; 上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title></title><style>* {margin: 0;padding: …

css:clip元素裁剪实现Loading加载效果边框

clip 属性定义了元素的哪一部分是可见的。clip 属性只适用于 position:absolute 的元素。 警告&#xff1a; 这个属性已被废弃。建议使用 clip-path 文档 https://developer.mozilla.org/zh-CN/docs/Web/CSS/cliphttps://developer.mozilla.org/zh-CN/docs/Web/CSS/clip-path …

Ribbon 负载均衡原理和策略

目录 一、Ribbon 是什么 二、Ribbon 负载均衡原理 三、Ribbon 负载均衡策略 四、Ribbon的应用场景 一、Ribbon 是什么 Ribbon是一个开源的、基于HTTP和TCP的客户端负载均衡工具&#xff0c;它提供了一个简单的、基于配置的负载均衡策略&#xff0c;可以帮助开发人员更轻松…

【编程语言发展史】Go语言的发展历史

目录 Go的起源 Go语言发展时间轴 logo Go的起源 Go 语言起源 2007 年&#xff0c;并于 2009 年正式对外发布。它从 2009 年 9 月 21 日开始作为谷歌公司 20% 兼职项目&#xff0c;即相关员工利用 20% 的空余时间来参与 Go 语言的研发工作。该项目的三位领导者均是著名的 …

【23-24 秋学期】NNDL 作业7 基于CNN的XO识别

一、用自己的语言解释以下概念 局部感知、权值共享池化&#xff08;子采样、降采样、汇聚&#xff09;。会带来那些好处和坏处&#xff1f;全卷积网络&#xff08;课上讲的这个概念不准确&#xff0c;同学们查资料纠正一下&#xff09;低级特征、中级特征、高级特征多通道。N输…

8086读取键盘-磁盘输入

文章目录 前言1.从键盘读数据2.磁盘读数据 前言 想过一个问题没有&#xff0c; 8086是如何从键盘中接受输入的&#xff1f; 8086如何将字符在显示器上显示的&#xff1f; 8086如何从磁盘中读取数据的&#xff1f; 上面的问题都是没有操作系统的时候&#xff0c;比如bios的那段…

【ES专题】ElasticSearch功能详解与原理剖析

目录 前言要点阅读对象阅读导航前置知识笔记正文一、ES数据预处理1.1 Ingest Node&#xff1a;摄入节点1.2 Ingest Pipeline&#xff1a;摄入管道1.3 Processor&#xff1a;预处理器——简单加工1.4 Painless Script&#xff1a;脚本——复杂加工1.5 简单实用案例 二、文档/数据…