Python实战:绘制直方图的示例代码,数据可视化获取样本分布特征

文章目录

  • 一、初步
  • 二、参数
  • 三、绘图类型
  • 四、多组数据直方图对比
      • Python技术资源分享
        • 1、Python所有方向的学习路线
        • 2、学习软件
        • 3、精品书籍
        • 4、入门学习视频
        • 5、实战案例
        • 6、清华编程大佬出品《漫画看学Python》
        • 7、Python副业兼职与全职路线

一、初步

对于大量样本来说,如果想快速获知其分布特征,最方便的可视化方案就是直方图,即统计落入不同区间中的样本个数。

以正态分布为例

import numpy as np
import matplotlib.pyplot as plt
xs = np.random.normal(0, 1, size=(5000))
fig = plt.figure()
for i,b in enumerate([10, 50, 100, 200],1):ax = fig.add_subplot(2,2,i)plt.hist(xs, bins=b)
plt.show()

其中bins参数用于调控区间个数,出图结果如下
在这里插入图片描述

二、参数

直方图函数的定义如下

hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)

除了x和bins之外,其他参数含义为

  • range 绘图区间,默认将样本所有范围纳入其中
  • density 为True时,纵坐标单位是占比
  • weights 与x个数相同,表示每个值所占权重
  • cumulative 为True时,将采取累加模式
  • bottom y轴起点,有了这个,可以对直方图进行堆叠
  • histtype 绘图类型
  • align 对其方式,可选left, mid, right三种,代表左中右
  • oritentation 绘制方向,可选vertical和horizontal两种
  • rwitdth 数据条宽度
  • log 为True时,开启对数坐标
  • color, label 颜色,标签
  • stacked

三、绘图类型

histtype共有4个选项,分别是bar, barstacked, step以及stepfilled,其中barstacked表示堆叠,下面对另外三种参数进行演示

types = ['bar', 'step', 'stepfilled']
fig = plt.figure()
for i,t in enumerate(types,1):ax = fig.add_subplot(1,3,i)plt.hist(xs, bins=50, histtype=t, rwidth=0.5)
plt.show()

效果如下
在这里插入图片描述

堆叠直方图,就是把多个直方图叠在一起

bins = [10, 30, 100]
ws = [1, 0.7, 0.5]
for b,w in zip(bins, ws):print(b,w)plt.hist(xs, bins=b, density=True, histtype='barstacked', rwidth = w, alpha=w)
plt.show()

效果如下
在这里插入图片描述

四、多组数据直方图对比

直方图中设置了rwidth选项,这意味着可以通过合理安排数据条宽度,以实现多组数据直方图在一个图像中更加

N = 10000
labels = ["norm", "power", "poisson"]
data = np.array([np.random.normal(0, 1, size=N)**2,np.random.power(5, size=N),np.random.uniform(0, 1, size=N)
]).T
plt.hist(data, 50, density=True, range=(0,1), label=labels)
plt.legend()
plt.show()

其中,data为3组统计数据,hist函数会自行规划画布,效果如下
在这里插入图片描述


【最新Python全套从入门到精通学习资源,文末免费领取!】

Python技术资源分享

如果你对Python感兴趣,学好 Python 不论是就业、副业赚钱、还是提升学习、工作效率,都是非常不错的选择,但要有一个系统的学习规划。

小编是一名Python开发工程师,自己整理了一套 【最新的Python系统学习教程】,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。

如果你是准备学习Python或者正在学习,下面这些你应该能用得上:

1、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

2、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

在这里插入图片描述

3、精品书籍

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

在这里插入图片描述

4、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

img

5、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

6、清华编程大佬出品《漫画看学Python》

用通俗易懂的漫画,来教你学习Python,让你更容易记住,并且不会枯燥乏味。

在这里插入图片描述

7、Python副业兼职与全职路线

在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/188094.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年【危险化学品经营单位主要负责人】免费试题及危险化学品经营单位主要负责人证考试

题库来源:安全生产模拟考试一点通公众号小程序 2023年危险化学品经营单位主要负责人免费试题为正在备考危险化学品经营单位主要负责人操作证的学员准备的理论考试专题,每个月更新的危险化学品经营单位主要负责人证考试祝您顺利通过危险化学品经营单位主…

前端开发学习指南

前端是一个看似入门门槛不高,但要学好很难的领域。前端的知识体系庞杂又松散,技术演进快,如果摸不清脉络的话很容易陷入盲人摸象的困境甚至跑偏。 其实只要掌握了正确的方法,学习前端和学好前端就只是个时间问题,希望下…

OpenCV图像坐标系

绘制代码: X轴 # 选取两个点 point1 = (20, 0) point2 = (200, 0)# 在图像上绘制连接线 cv2.line(img, point1, point2, (

解决找不到x3daudio1_7.dll的方法,快速解决x3daudio1_7.dll丢失问题

在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是“找不到x3daudio1_7.dll”。这个问题可能是由于多种原因引起的,例如文件丢失、损坏或被病毒感染等。下面将详细介绍如何解决这个问题。 首先,我们需要了解x3daudio1_…

Kotlin HashMap entries.filter过滤forEach

Kotlin HashMap entries.filter过滤forEach fun main(args: Array<String>) {val hashMap HashMap<String, Int>()hashMap["a"] 1hashMap["b"] 2hashMap["c"] 3println(hashMap)hashMap.entries.filter {println("filter $…

2023年【北京市安全员-C3证】考试题库及北京市安全员-C3证在线考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 北京市安全员-C3证考试题库是安全生产模拟考试一点通总题库中生成的一套北京市安全员-C3证在线考试&#xff0c;安全生产模拟考试一点通上北京市安全员-C3证作业手机同步练习。2023年【北京市安全员-C3证】考试题库及…

Nignx及负载均衡动静分离

目录 一.Nginx负载均衡 1.1.下载 1.2.安装 1.3.负载均衡 二.前端部署 2.1. 准备工作 2.2.部署 好啦今天就到这里了哦&#xff01;&#xff01;&#xff01;希望能帮到你哦&#xff01;&#xff01;&#xff01; 一.Nginx负载均衡 1.1.下载 输入命令 : cd javaCloudJun/…

键盘win键无法使用,win+r不生效、win键没反应、Windows键失灵解决方案(亲测可以解决)

最近几天发现自己笔记本的win键无法使用&#xff0c;win失灵了&#xff0c;但是外接键盘后则正常:。 这个问题困扰了我一周&#xff0c;我都以为自己的枪神坏了。 寻找了几个解决方法&#xff0c;网上看了好多好多稀里糊涂的办法&#xff0c;都是不管用的&#xff0c;这里给大…

超简单的Linux FTP服务搭建教程

目录 前言1、检查vsftp是否已安装2、安装vsftpd3、启动ftp服务4、测试ftp服务5、上传文件配置总结 前言 本文记录了在Kylin Linux Desktop V10(SP1)系统上搭建FTP服务的过程。FTP是File Transfer Protocol的缩写&#xff0c;译为文件传输协议&#xff0c;是用于在网络上进行文…

向量的点积和外积

参考&#xff1a;https://www.cnblogs.com/gxcdream/p/7597865.html 一、向量的内积&#xff08;点乘&#xff09; 定义&#xff1a; 两个向量a与b的内积为 ab |a||b|cos∠(a, b)&#xff0c;特别地&#xff0c;0a a0 0&#xff1b;若a&#xff0c;b是非零向量&#xff0c;…

【读点论文】结构化剪枝

结构化剪枝 在一个神经网络模型中&#xff0c;通常包含卷积层、汇合层、全连接层、非线形层等基本结构&#xff0c;通过这些基本结构的堆叠&#xff0c;最终形成我们所常用的深度神经网络。 早在 1998 年&#xff0c;LeCun 等人使用少数几个基本结构组成 5 层的 LeNet-5 网络&…

GitHub Copilot Chat将于12月全面推出;DeepLearning.AI免费新课

&#x1f989; AI新闻 &#x1f680; GitHub Copilot Chat将于12月全面推出&#xff0c;提升开发者的生产力 摘要&#xff1a;GitHub宣布将于12月全面推出GitHub Copilot Chat&#xff0c;这是GitHub Copilot的一个新功能&#xff0c;旨在帮助开发者编写代码。它能够集成到开…

解决Docker启动之npm版本不兼容问题

报错内容&#xff1a; npm WARN read-shrinkwrap This version of npm is compatible with lockfileVersion1, but package-lock.json was generated for lockfileVersion2. Ill try to do my best with it! npm WARN tar ENOENT: no such file or directory, open /home/wvp-…

一个轻量级 Java 权限认证框架——Sa-Token

一、框架介绍 Sa-Token 是一个轻量级 Java 权限认证框架&#xff0c;主要解决&#xff1a;登录认证、权限认证、单点登录、OAuth2.0、分布式Session会话、微服务网关鉴权 等一系列权限相关问题。 官网文档: https://sa-token.cc/doc.html 二、Spring Boot 集成Sa-Token 2.1、…

【机器学习】七、降维与度量学习

1. 维数灾难 样本的特征数称为维数&#xff08;dimensionality&#xff09;&#xff0c;当维数非常大时&#xff0c;也就是现在所说的维数灾难。 维数灾难具体表现在&#xff1a;在高维情形下&#xff0c;数据样本将变得十分稀疏&#xff0c;因为此时要满足训练样本为“密采样…

函数的连续性

函数在某一点极限存在&#xff0c;不一定连续 函数的左极限 函数的右极限 函数在某点连续需要满足三个条件 1、左右极限存在 2、左右极限相等 3、函数在该点的极限值等于在该点的函数值 满足1、2两个条件函数在该点极限存在。

kubernetes集群编排——k8s调度

nodename vim nodename.yaml apiVersion: v1 kind: Pod metadata:name: nginxlabels:app: nginxspec:containers:- name: nginximage: nginxnodeName: k8s2 nodeName: k8s2 #找不到节点pod会出现pending&#xff0c;优先级最高 kubectl apply -f nodename.yamlkubectl get pod …

【Node.js入门】1.2 部署Node.js开发环境

1.2 部署Node.js开发环境 在 Windows 系统上安装 Node.js 两种文件格式的安装包 Windows安装包&#xff08;.msi&#xff09;Windows二进制文件&#xff08;.exe&#xff09;安装包 检查Node.js版本 node --version 在 Linux 系统上安装 Node.js Linux操作系统上安装Nod…

深度学习 python opencv 动物识别与检测 计算机竞赛

文章目录 0 前言1 深度学习实现动物识别与检测2 卷积神经网络2.1卷积层2.2 池化层2.3 激活函数2.4 全连接层2.5 使用tensorflow中keras模块实现卷积神经网络 3 YOLOV53.1 网络架构图3.2 输入端3.3 基准网络3.4 Neck网络3.5 Head输出层 4 数据集准备4.1 数据标注简介4.2 数据保存…

Day26力扣打卡

打卡记录 搜索旋转排序数组&#xff08;二分&#xff09; 链接 class Solution {int findMin(vector<int> &nums) {int left -1, right nums.size() - 1; // 开区间 (-1, n-1)while (left 1 < right) { // 开区间不为空int mid left (right - left) / 2;if…