Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

专栏集锦,大佬们可以收藏以备不时之需

Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html

Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html

Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html

tensorflow专栏:https://blog.csdn.net/superdangbo/category_8691332.html

Redis专栏:https://blog.csdn.net/superdangbo/category_9950790.html

Spring Cloud实战:

Spring Cloud 实战 | 解密Feign底层原理,包含实战源码

Spring Cloud 实战 | 解密负载均衡Ribbon底层原理,包含实战源码

1024程序员节特辑文章:

1024程序员狂欢节特辑 | ELK+ 协同过滤算法构建个性化推荐引擎,智能实现“千人千面”

1024程序员节特辑 | 解密Spring Cloud Hystrix熔断提高系统的可用性和容错能力

1024程序员节特辑 | ELK+ 用户画像构建个性化推荐引擎,智能实现“千人千面”

1024程序员节特辑 | OKR VS KPI谁更合适?

1024程序员节特辑 | Spring Boot实战 之 MongoDB分片或复制集操作

Spring实战系列文章:

Spring实战 | Spring AOP核心秘笈之葵花宝典

Spring实战 | Spring IOC不能说的秘密?

国庆中秋特辑系列文章:

国庆中秋特辑(八)Spring Boot项目如何使用JPA

国庆中秋特辑(七)Java软件工程师常见20道编程面试题

国庆中秋特辑(六)大学生常见30道宝藏编程面试题

国庆中秋特辑(五)MySQL如何性能调优?下篇

国庆中秋特辑(四)MySQL如何性能调优?上篇

国庆中秋特辑(三)使用生成对抗网络(GAN)生成具有节日氛围的画作,深度学习框架 TensorFlow 和 Keras 来实现

国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作

国庆中秋特辑(一)浪漫祝福方式 用循环神经网络(RNN)或长短时记忆网络(LSTM)生成祝福诗词

在这里插入图片描述

目录

  • 一、Python 卷积神经网络(CNN)进行图像识别基本步骤
  • 二、实战:使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例

一、Python 卷积神经网络(CNN)进行图像识别基本步骤

Python 卷积神经网络(CNN)在图像识别领域具有广泛的应用。通过使用卷积神经网络,我们可以让计算机从图像中学习特征,从而实现对图像的分类、识别和分析等任务。以下是使用 Python 卷积神经网络进行图像识别的基本步骤:

  1. 导入所需库:首先,我们需要导入一些 Python 库,如 TensorFlow、Keras 等,以便搭建和训练神经网络。
import tensorflow as tf  
from tensorflow.keras import layers, models  
  1. 数据准备:加载图像数据,通常使用数据增强和预处理方法来扩充数据集。这可以包括缩放、裁剪、翻转等操作。
# 假设我们有一个名为'data'的图像数据集  
import numpy as np  
data = np.load('data.npz')  
images = data['images']  
labels = data['labels']  
  1. 构建卷积神经网络模型:搭建卷积神经网络,包括卷积层、池化层和全连接层。卷积层用于提取图像特征,池化层用于降低特征图的维度,全连接层用于最终的分类。
model = models.Sequential()  
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 3)))  
model.add(layers.MaxPooling2D((2, 2)))  
model.add(layers.Conv2D(64, (3, 3), activation='relu'))  
model.add(layers.MaxPooling2D((2, 2)))  
model.add(layers.Conv2D(64, (3, 3), activation='relu'))  
model.add(layers.Flatten())  
model.add(layers.Dense(64, activation='relu'))  
model.add(layers.Dense(10, activation='softmax'))  
  1. 编译模型:配置优化器、损失函数和评估指标。
model.compile(optimizer='adam',  loss='sparse_categorical_crossentropy',  metrics=['accuracy'])  
  1. 训练模型:将数据集分为训练集和验证集,使用训练集进行模型训练。
model.fit(images_train, labels_train, epochs=10, validation_data=(images_test, labels_test))  
  1. 评估模型:使用验证集评估模型性能。
test_loss, test_acc = model.evaluate(images_test, labels_test)  
print("Test accuracy:", test_acc)  
  1. 预测:使用训练好的模型对新图像进行分类预测。
predictions = model.predict(new_image)  
predicted_class = np.argmax(predictions)  
print("Predicted class:", predicted_class)  

通过以上步骤,我们可以使用 Python 卷积神经网络(CNN)对图像进行识别。需要注意的是,这里仅提供一个简单的示例,实际应用中可能需要根据任务需求调整网络结构、参数和训练策略。

二、实战:使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例

以下是一个使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别的完整代码示例。这个例子使用了预训练的 VGG16 模型,你可以根据需要修改网络结构和相关参数。
请注意,运行此代码需要安装 TensorFlow 和 Keras 库。如果你尚未安装,可以使用以下命令进行安装:

pip install tensorflow  
import tensorflow as tf  
from tensorflow.keras.models import Model  
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout  
from tensorflow.keras.preprocessing.image import ImageDataGenerator  
from tensorflow.keras.applications.vgg16 import VGG16
# 加载预训练的 VGG16 模型  
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# 创建自定义模型  
x = base_model.output  
x = Flatten()(x)  
x = Dense(1024, activation='relu')(x)  
x = Dropout(0.5)(x)  
predictions = Dense(1000, activation='softmax')(x)
# 创建模型  
model = Model(inputs=base_model.input, outputs=predictions)
# 为了在 CPU 上运行,将 GPU 设置为 False  
model.predict(np.random.rand(1, 224, 224, 3), verbose=0, steps_per_epoch=1)
# 加载人脸数据集  
train_datasets = 'path/to/train/data'  
test_datasets = 'path/to/test/data'
# 数据预处理  
train_datagen = ImageDataGenerator(  rescale=1./255,  shear_range=0.2,  zoom_range=0.2,  horizontal_flip=True  
)
test_datagen = ImageDataGenerator(rescale=1./255)
# 加载和预处理训练数据  
train_generator = train_datagen.flow_from_directory(  train_datasets,  target_size=(224, 224),  batch_size=32,  class_mode='softmax'  
)
# 加载和预处理测试数据  
validation_generator = test_datagen.flow_from_directory(  test_datasets,  target_size=(224, 224),  batch_size=32,  class_mode='softmax'  
)
# 编译模型  
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型  
model.fit(  train_generator,  epochs=10,  validation_data=validation_generator  
)
# 使用模型进行预测  
model.evaluate(validation_generator)  

请注意,你需要将 train_datasetstest_datasets 替换为人脸数据的路径。此代码示例假设你使用的是一个与人脸图像大小相同的数据集。
这个例子使用了一个预训练的 VGG16 模型,并将其剩余层作为基础层。然后,我们添加了自己的全连接层进行人脸识别。根据你的人脸数据集和任务需求,你可能需要调整网络结构、训练参数和数据预处理方法。
在运行此代码之前,请确保你已经准备好了一个包含人脸图像的数据集。你可以使用人脸检测算法(如 dlib 库)来提取人脸区域,然后将人脸图像裁剪到固定大小(如 224x224 像素)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/188887.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openEuler编译安装nmon性能监控工具及可视化分析工具

ln 介绍 nmon(short for Nigel’s Monitor)是一个性能分析工具,由蓝色巨人IBM开发,最早用于自家操作系统UNIX,AIX (Advanced Interactive eXecutive)。现在也能用在Linux上。它可以显示系统的…

STM32--时钟树

一、什么是时钟? 时钟是单片机的脉搏,是系统工作的同步节拍。单片机上至CPU,下至总线外设,它们工作时序的配合,都需要一个同步的时钟信号来统一指挥。时钟信号是周期性的脉冲信号。 二、什么是时钟树? S…

51单片机PCF8591数字电压表数码管显示设计( proteus仿真+程序+设计报告+讲解视频)

PCF8591数字电压表数码管显示 1.主要功能:讲解视频:2.仿真3. 程序代码4. 设计报告5. 设计资料内容清单&&下载链接资料下载链接(可点击): 51单片机PCF8591数字电压表数码管设计( proteus仿真程序设计报告讲解视…

设计模式之--原型模式(深浅拷贝)

原型模式 缘起 某天,小明的Leader找到小明:“小明啊,如果有个发简历的需求,就是有个简历的模板,然后打印很多份,要去一份一份展示出来,用编程怎么实现呢?” 小明一听,脑袋里就有了…

【云备份|| 日志 day6】文件业务处理模块

云备份day6 业务处理 业务处理 云备份项目中 ,业务处理模块是针对客户端的业务请求进行处理,并最终给与响应。而整个过程中包含以下要实现的功能: 借助网络通信模块httplib库搭建http服务器与客户端进行网络通信针对收到的请求进行对应的业…

IDEA重新choose source

大概现状是这样:之前有个工程,依赖了别的模块基础包,但当时并没有依赖包的源码工程,因此,通过鼠标左键点进去,看到的是jar包里的class文件,注释什么的都去掉了的,不好看。后面有这个…

采用示波器显示扭矩传感器模拟信号

扭矩传感器输出的信号波形通常是模拟电压信号,可以通过示波器等仪器进行分析。扭矩传感器的输出信号波形通常有两种类型:正弦波和方波。 应变片传感器扭矩测量采用应变电测技术。在弹性轴上粘贴应变计组成测量电桥,当弹性轴受扭矩产生微小变…

Oracle(16)Managing Privileges

目录 一、基础知识 1、Managing Privileges管理权限 2、System Privileges 系统特权 3、System Privileges : Example系统权限:示例 4、Who Can Grant or Revoke? 谁可以授予或撤销权限? 5、The PUBLIC 6、SYSDBA and SYSOPER 7、Revoke with A…

分类预测 | Matlab实现PSO-LSTM粒子群算法优化长短期记忆神经网络的数据多输入分类预测

分类预测 | Matlab实现PSO-LSTM粒子群算法优化长短期记忆神经网络的数据多输入分类预测 目录 分类预测 | Matlab实现PSO-LSTM粒子群算法优化长短期记忆神经网络的数据多输入分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现PSO-LSTM粒子群算法优化长短…

Llama2通过llama.cpp模型量化 WindowsLinux本地部署

Llama2通过llama.cpp模型量化 Windows&Linux本地部署 什么是LLaMA 1 and 2 LLaMA,它是一组基础语言模型,参数范围从7B到65B。在数万亿的tokens上训练的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需求…

KCC@广州与 TiDB 社区联手—广州开源盛宴

10月21日,KCC广州与 TiDB 社区联手,在海珠区保利中悦广场 29 楼召开了一次难忘的开源盛宴。这不仅仅是 KCC广州的又一次线下见面,更代表着与 TiDB 社区及广州技术社区的首次深度合作。 活动的策划与组织由 KCC广州负责人 - 惠世冀、PingCAP 的…

Ocelot:.NET开源API网关提供路由管理、服务发现、鉴权限流等功能

随着微服务的兴起,API网关越来越常见。API网关是连接应用程序和用户之间的桥梁,就像一个交通指挥员,负责处理所有进出应用的数据和请求,确保安全、高效、有序地流通。 今天给大家推荐一个.NET开源API网关。 01 项目简介 Ocelot…

用Powershell实现:删除所有不是与.json文件重名的.jpg文件

# 指定要搜索的目录路径 $directoryPath "C:\path\to\your\directory"# 获取该目录下的所有.jpg和.json文件 $jpgFiles Get-ChildItem -Path $directoryPath -Filter *.jpg $jsonFiles Get-ChildItem -Path $directoryPath -Filter *.json | Select-Object -Expan…

海外媒体发稿:彭博社发稿宣传中,5种精准营销方式

在如今的信息发生爆炸时期,营销方式多种多样,但是充分体现精准营销并针对不同用户群体的需求并非易事。下面我们就根据彭博社发稿营销推广为例子,给大家介绍怎样根据不同用户人群方案策划5种精准营销方式。 1.界定总体目标用户人群在制订精准…

CSS注入的四种实现方式

目录 CSS注入窃取标签属性数据 简单的一个实验: 解决hidden 方法1:jsnode.js实现 侧信道攻击 方法2:对比波兰研究院的方案 使用兄弟选择器 方法3:jswebsocket实现CSS注入 实验实现: 方法4:window…

数据分析实战 | 泊松回归——航班数据分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 一、数据及分析对象 CSV文件:o-ring-erosion-only.csv 数据集链接:https://download.csdn.net/download/m0_7…

蓝桥杯算法竞赛第一周题型总结

本专栏内容为:蓝桥杯学习专栏,用于记录蓝桥杯的学习经验分享与总结。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库🚚 🌹&#x1f33…

CH11_重构API

将查询函数和修改函数分离(Separate Query from Modifier) function getTotalOutstandingAndSendBill() {const result customer.invoices.reduce((total, each) > each.amount total, 0);sendBill();return result; }function totalOutstanding() …

SparkAi创作系统ChatGPT网站源码+详细搭建部署教程+AI绘画系统+支持GPT4.0+Midjourney绘画

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

「题解」反转链表 返回中间节点

文章目录 🍉题目1:反转链表🍉解析🍌解法一:创建一个新链表🍌解法二:直接操作原链表 🍉题目2:返回中间节点🍌解法一:快慢指针🍌解法二&…