【matlab】KMeans KMeans++实现手写数字聚类

目录

matlab代码kmeans

matlab代码kmeans++


 MNIST DATABASE下载网址: http://yann.lecun.com/exdb/mnist/

聚类

将物理或抽象对象的集合分成由类似特征组成的多个类的过程称为聚类(clustering)。

对于给定N个n维向量x1,…,xN∈Rn,聚类的目标就是将这N个n维向量分成k个集合,尽量使得同一个集合中的向量彼此接近,如图2所示。

图2 聚类示意效果图

K-means聚类算法迭代过程

首先初始化聚类中心,如图3所示。

图3 k-means初始聚类中心

然后计算每个点到k个聚类中心的聚类,并将其分配到最近的聚类中心所在的聚类中,重新计算每个聚类现在的质心,并以其作为新的聚类中心,如图4所示。

图4 k-means迭代1次

重复迭代,直到达到给定的迭代次数或k个聚类中心的变化值小于某个阈值,形成最终的聚类结果,如图5所示。

图5 k-means最终聚类效果

K均值聚类算法的复杂度分析

初始化:选择K个初始聚类中心。这个步骤的时间复杂度为O(K)。

分配:对每个样本点,计算其与每个聚类中心的距离,并将其分配到距离最近的聚类中心所代表的簇。这个步骤的时间复杂度为O(N * K * d),其中N是样本数,d是特征数。

更新:对每个簇,计算其所有样本点的平均值作为新的聚类中心。这个步骤的时间复杂度为O(N * K * d)。

重复执行第2和第3步,直到满足停止条件,例如达到最大迭代次数或聚类中心变化小于一定阈值。

因此,K均值聚类算法的总体时间复杂度主要由分配和更新两个步骤决定,为O(T * N * K * d),其中T是迭代次数。

K-means手写数字聚类

kmeas聚类算法对train_images.mat的前100张和前1000张手写数字图像进行聚类,重复测试10次,每次测试的正确率如图6所示,其中100张的平均正确率为59%,最高正确率为66%,平均运行时间为0.1秒,1000张的平均正确率为55%,最高正确率为62%,平均运行时间为3.6秒。

图6 K-means聚类结果

train_images.mat的前100张、500张、1000张、2000张和4000张手写数字图像进行聚类,每种图像张数重复测试10次,计算平均正确率和平均运行时间,结果如表1所示。

表1 K-means聚类测试

由表1可知,K-means手写数字聚类在图像数目达到4000张的时候,运行时间达到了41秒,而且平均正确率为60%左右。

K-means性能分析

由结果可以很明显地看出,K-means聚类应用在手写数字上的效果并不是很好,平均正确率只有60%左右,其中有几个原因。一是K-means假设各个簇的大小、形状和密度相似,如果数据集中的簇具有类似的分布特征,K-means能够产生较好的聚类结果,而手写数字数据集的数字并不是均匀分布的,不同的数字可能出现频率不同,而且手写数字的形状有的区别不大;二是K-means在处理高维数据时可能会遇到困难,因为高维空间下的距离计算和聚类结果评估会变得复杂,而实验中手写数字的维度达到了784。

K-means++

K-means聚类算法的一大缺点是初始类别中心的选择对聚类迭代的次数影响很大,而K-means++是想通过选择更好初始类别中心来减少K-means聚类的迭代次数。

那么什么样的初始类别中心是更好的呢?

好的初始类别中心应该能够均匀地覆盖整个数据空间,能够代表数据集中的不同特征。

K-means++算法流程

  • 从数据点中随机选择一个点作为第一个聚类中心。
  • 对于每个数据点,计算它与当前已选择的聚类中心的距离,选择与已选择的聚类中心距离最大的数据点作为下一个聚类中心。
  • 重复步骤②,直到选择出k个初始聚类中心。

K-means++手写数字聚类

kmeas++聚类算法对train_images.mat的前100张和前1000张手写数字图像进行聚类,重复测试10次,每次测试的正确率如图7所示,其中100张的平均正确率为58%,最高正确率达到了63%,平均运行时间为0.03秒,1000张的平均正确率为57%,最高正确率为61%,平均运行时间为0.76秒。

图7 K-means++聚类结果

我们再train_images.mat的前100张、1000张、2000张、4000张和8000张手写数字图像进行聚类,每种图像张数重复测试10次,计算平均正确率和平均运行时间,结果如表2所示。

表2 K-means聚类测试

由表2可知,K-means手写数字聚类在图像数目达到8000张的时候,运行时间达到了15秒,而且平均正确率均高于50%。

K-means++性能分析

由结果可以很明显地看出,相比K-means的聚类结果,K-means++的正确率差别不大,基本上也是在60%左右,但是程序运行时间极大的减少了,这说明K-means++的优化,即选择更好的初始类别中心,可以大大的减少算法迭代的过程,迅速聚类。

但是由于K-means++只是为K-means聚类选择更好的初始化中心,这只是减少了聚类的迭代次数,并不能解决K-means聚类手写数字效果不好的问题。

matlab代码kmeans

clc,clear;
load ./train_images.mat;
load ./train_labels.mat;
k=10;
dimension=2;
Dimension=28*28;
picturesNumber=1000;
sample=train_images(:,:,1:picturesNumber);
sample=reshape(sample,28*28,picturesNumber);
sample=sample';
class=zeros(1,picturesNumber);
times=[];
ratios=[];
for time=1:10tic;classCenter=sample(randperm(picturesNumber,k),:); % 随机取点iterator=0;while(true)iterator=iterator+1;nextCenter=zeros(k,Dimension);classNumber=zeros(1,k);for i=1:picturesNumberdistances=zeros(1,k);for j=1:kdistances(j)=pdist2(sample(i,:),classCenter(j,:));end[~,index]=sort(distances);class(i)=index(1);classNumber(class(i))=classNumber(class(i))+1;nextCenter(class(i),:)=nextCenter(class(i),:)+sample(i,:);endtemp=classCenter;for i=1:kif classNumber(i)~=0classCenter(i,:)=nextCenter(i,:)/classNumber(i);endendif temp==classCenterbreakendendmap=containers.Map('KeyType','int32','ValueType','int32');for i=1:knumber=[];for j=1:picturesNumberif class(j)==inumber=[number,train_labels(j)];endendmap(i)=mode(number);endcount=0;for i=1:picturesNumberif map(class(i))==train_labels(i)count=count+1;endendratio=count/picturesNumber;ratios=[ratios,ratio];times=[times,toc];
end

matlab代码kmeans++

clc;
clear;
load ./train_images.mat;
load ./train_labels.mat;
k = 10;
dimension = 2;
Dimension = 28 * 28;
picturesNumber = 100;
sample = train_images(:, :, 1:picturesNumber);
sample = reshape(sample, 28 * 28, picturesNumber);
sample = sample';
class = zeros(1, picturesNumber);
times = [];
ratios = [];
for time = 1:10tic;% K-Means++ initial center selectionclassCenter = zeros(k, Dimension);classCenter(1, :) = sample(randi(picturesNumber), :);for j = 2:kdistances = pdist2(sample, classCenter(1:j-1, :));minDistances = min(distances, [], 2); % 为什么挑最近的呢?因为是挑离所有已选中心最远的[~, index] = max(minDistances);classCenter(j, :) = sample(index, :);enditerator = 0;while (true)iterator = iterator + 1;nextCenter = zeros(k, Dimension);classNumber = zeros(1, k);for i = 1:picturesNumberdistances = pdist2(sample(i, :), classCenter);[~, index] = min(distances);class(i) = index;classNumber(class(i)) = classNumber(class(i)) + 1;nextCenter(class(i), :) = nextCenter(class(i), :) + sample(i, :);endtemp = classCenter;for i = 1:kif classNumber(i) ~= 0classCenter(i, :) = nextCenter(i, :) / classNumber(i);endendif isequal(temp, classCenter)break;endendmap = containers.Map('KeyType', 'int32', 'ValueType', 'int32');for i = 1:knumber = [];for j = 1:picturesNumberif class(j) == inumber = [number, train_labels(j)];endendmap(i) = mode(number);endcount = 0;for i = 1:picturesNumberif map(class(i)) == train_labels(i)count = count + 1;endendratio = count / picturesNumber;ratios = [ratios, ratio];times = [times, toc];
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190283.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS如何通过在线状态来监听其他设备登录的状态

前提条件 1、完成 3.9.1 或以上版本 SDK 初始化 2、了解环信即时通讯 IM API 的 使用限制。 3、已联系商务开通在线状态订阅功能 实现方法 你可以通过调用 subscribe 方法订阅自己的在线状态,从而可以监听到其他设备在登录和离线时的回调,示例代码如下…

Javaweb之javascript的详细解析

1.5.1.2 String对象 语法格式 String对象的创建方式有2种: 方式1: var 变量名 new String("…") ; //方式一 例如: var str new String("Hello String"); 方式2: var 变量名 "…" ; //方…

美颜与性能的平衡:视频直播美颜SDK集成与性能优化指南

目前美颜SDK所遇到的挑战是如何在追求美颜效果的同时保持系统性能的稳定。本文将深入探讨视频直播美颜SDK的集成以及性能优化的关键指南,以帮助开发者找到合适的平衡点。 一、美颜SDK的集成 1.选择适用于直播的美颜SDK 在美颜SDK的众多选择中,要考虑…

【SpringBoot3+Vue3】一【基础篇】

目录 一、Spring Boot概述 1、Spring Boot 特性 1.1 起步依赖 1.2 自动配置 1.3 其他特性 1.3.1 内嵌的Tomcat、Jetty (无需部署WAR文件) 1.3.2 外部化配置 1.3.3 不需要XML配置(properties/yml) 二、Spring Boot入门 1、一个入门程序需求 2、步骤 2.1 创建Maven工…

ChromeDriver谷歌浏览器驱动下载安装与使用最新版118/119/120

ChromeDriver谷歌浏览器驱动下载安装与使用最新版118/119/120 1. 确定Chrome版本 我们首先确定自己的Chrome版本 Chrome设置->关于Chrome 可以看到,当前chrome是最新版本:119.0.6045.124(正式版本) (64 位&#…

江门車馬炮汽车金融中心 11月11日开张

江门车马炮汽车金融中心于11月11日正式开张,这是江门市汽车金融服务平台,旨在为广大车主提供更加便捷、高效的汽车金融服务。 江门市作为广东省的一个经济发达城市,汽车保有量持续增长,但车主在购车、用车、养车等方面仍存在诸多不…

CSRF 漏洞详解

CSRF 漏洞详解 漏洞描述 CSRF(Cross-Site Request Forgery)漏洞是一种Web应用程序安全漏洞,它允许攻击者利用受害者的已认证会话来执行未经授权的恶意操作。攻击者可以诱使受害者在受害者已经登录的情况下,通过社交工程或其他方…

2023亚太杯数学建模C题思路

文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 建模常见问题类型3.1 分类问题3.2 优化问题3.3 预测问题3.4 评价问题 4 建模资料5 最后 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 竞赛信息 2023年第十三…

HarmonyOS开发(三):ArkTS基础

1、ArkTS演进 Mozilla创建了JS ---> Microsoft创建了TS ----> Huawei进一步推出ArkTS 从最初的基础逻辑交互(JS),到具备类型系统的高效工程开发(TS),再到融合声明式UI、多维状态管理等丰富的应用开发能力&…

华东“启明”青少年音乐艺术实践中心揭幕暨中国“启明”巴洛克合奏团首演音乐会

2023年11月11日,华东“启明”青少年音乐艺术实践中心在上海揭幕,中国“启明”巴洛克合奏团开启了首场音乐会。 华东“启明”青少年音乐艺术实践中心由中共宁波市江北区委宣传部与上音管风琴艺术中心联合指导,宁波音乐港、宁波市江北区洛奇音乐…

二十四、W5100S/W5500+RP2040树莓派Pico<PHY的状态模式控制>

文章目录 1. 前言2. 相关简介2.1 简述2.2 原理2.3 优点&应用 3. WIZnet以太网芯片4. PHY模式配置测试4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 测试现象 5. 注意事项6. 相关链接 1. 前言 W5100S/W5500不仅支持自动PHY自动协商,而且支持用户自定义…

什么是Ribbon的饥饿加载?有什么优势?

目录 一、什么是Ribbon 二、什么是饥饿加载 三、Ribbon饥饿加载的优势 四、Ribbon饥饿加载的劣势 一、什么是Ribbon Ribbon是一个开源的、基于HTTP和TCP的客户端负载均衡工具,它提供了一个简单的、基于配置的负载均衡策略,可以帮助开发人员更轻松地…

数据结构线性表——带头双向循环链表

前言:小伙伴们好久不见啦,上篇文章我们一起学习了数据结构线性表其一的单链表,了解了单链表的不少好处,但是不可能有完美的数据结构,就算是单链表,也会有很多缺点。 那么今天这篇文章,我们就来…

VUE组件的生命周期

每个 Vue 组件实例在创建时都需要经历一系列的初始化步骤,比如设置好数据侦听,编译模板,挂载实例到 DOM,以及在数据改变时更新 DOM。在此过程中,它也会运行被称为生命周期钩子的函数,让开发者有机会在特定阶…

软件测试小妙招:postman接口测试导入导出操作详解

前言 postman中的集合脚本,环境变量、全局变量全部都可以导出,然后分享给团队成员,导出后的脚本可以通过newman生成测试报告。另外还可以将浏览器,抓包工具,接口文档(swagger)中的数据包导入到postman中,并…

C语言——求 n 以内(不包括 n)同时能被 3 和 7 整除的所有自然数之和的平方根 s,n 从键盘输入。

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> #include<math.h> int main() {int i,n;double s0.0;printf("输入任意一个自然数&#xff1a; ");scanf("%d",&n);for(i1;i<n;i) {if(i%30&&i%70){si;}}ssqrt(s);printf(…

2023年11月上旬大模型新动向集锦

2023年11月上旬大模型新动向集锦 2023.11.10版权声明&#xff1a;本文为博主chszs的原创文章&#xff0c;未经博主允许不得转载。 1、GPT-4 Turbo在中文基准评测获八项满分 基于SuperCLUE通用大模型综合性中文测评基准&#xff0c;测评人员对GPT-4 Turbo进行了全方位测评。测…

Hive3 on Spark3配置

1、软件环境 1.1 大数据组件环境 大数据组件版本Hive3.1.2Sparkspark-3.0.0-bin-hadoop3.2 1.2 操作系统环境 OS版本MacOSMonterey 12.1Linux - CentOS7.6 2、大数据组件搭建 2.1 Hive环境搭建 1&#xff09;Hive on Spark说明 Hive引擎包括&#xff1a;默认 mr、spark、…

Mac电脑配置Flutter开发环境

1.进入官网下载页&#xff1a; Flutter SDK releases | Flutter 可以看到有 Windows、macOS、Linux三种系统的下载包 选择macOS&#xff0c;然后点击下载 Stable channel&#xff08;稳定版&#xff09;中的最新版本&#xff0c;下载完成后可以移动到资源库Library中。 2.下载…

arcgis--消除坐标系信息的两种方法

方法一&#xff1a;在【目录】中右击待修改数据&#xff0c;选择【属性】&#xff0c;选择【XY坐标】选项卡&#xff0c;点击清楚按钮。 方法二&#xff1a;在【数据管理工具】-【投影与变换】-【定义投影】中清楚坐标系信息。如下&#xff1a;