pychon/PIL/opencv/json学习过程中遇到的问题

1. 使用PIL.Image读取图片

注意:pytorch中对图像预处理是transforms的输入必须是PIL格式的文件,使用cv2读取的图片就按照第二条的代码处理(3通道合并、归一化处理)

from PIL import Image
img = Image.open("test1.jpg")读取图像
img.show()展示图片
print(img.size)查看图像是255*255大小的数据,每个像素点是0-1的值。而cv2读出每个像素点为0-255.

如果进行FasterRCNN推理:

	net=torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])img = Image.open("test1.jpg")img_t = transform(img)#裁剪及转换为张量batch_t = torch.unsqueeze(img_t,0)net.eval()out2=net(batch_t)

2.使用opencv读取图片

src_img=cv2.imread("test1.jpg")#读取图片
cv2.imshow("result",src_img)#显示图片
print(src_img.shape)#可查看大小为(255,255,3)此时cv2读取的图像格式为BGR,且每个像素点的值为0-255,需要使用	cv2.cvtColor(img,cv2.COLOR_BGR2RGB)转换为RGB格式
import cv2
import torch 
import torchvision
import numpy as np
from PIL import Image
import PIL
from matplotlib import pyplot as plt
from torchvision import transformsnet=torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
net.eval()
src_img=cv2.imread("test1.jpg")
img = cv2.cvtColor(src_img,cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img/255.).permute(2,0,1).float()
input=[]
input.append(img_tensor)
out2=net(input)
boxes=out2[0]['boxes']
labels=out2[0]['labels']
scores=out2[0]['scores']
boxes=boxes.detach().numpy()
boxes=np.array(boxes,np.uint8)
for idx in range(boxes.shape[0]):if scores[idx] >= 0.95:x1,y1,x2,y2=boxes[idx][0],boxes[idx][1],boxes[idx][2],boxes[idx][3]cv2.rectangle(src_img,(x1,y1),(x2,y2),(0,255,0),thickness=2)cv2.imshow("result",src_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.PIL和cv2图片相互转换:

img_pil=Image.fromarray(cv2.cvtColor(img_cv,cv2.COLOR_BGR2RGB))
img_cv=cv2.cvtColor(np.asarray(img_pil),cv2.COLOR_RGB2BGR)

Image读取的图片使用cv2显示:

img = Image.open("test1.jpg")
print(img.size)#(255,255)
cv2img=np.array(img.convert('RGB'))#转换为RGB格式
print(cv2img.shape)#(255,255,3)
cv2img=cv2.cvtColor(cv2img, cv2.COLOR_RGB2BGR)#cv2需要BGR格式图片
cv2.imshow("result",cv2img)#可正常展示

4.使用json保存读取文件,coco数据集为91类别,voc为21个类别

从txt文件加载字符串保存为json格式:
在这里插入图片描述
coco_classes.json:
在这里插入图片描述
代码:

import json
coco_class_path="./coco_classes.txt"#txt文件每行为一个数据如: 1 person前面为字典关键字key,person为字典value
jsondata={}#json文件是字典结构,用于存放数据
with open(coco_class_path,'r') as coco:for line in coco.readlines():#遍历txt文件每行字符串line=line.strip().split()#strip()去除两边控空字符,split()以空格分割字符串if len(line)>2:print(line[0],line[1],line[2])jsondata[line[0]] = line[1]+' '+line[2]#有些value为两个单词else:jsondata[line[0]] = line[1]with open('coco_classes.json','w') as coco:#写入json文件json.dump(jsondata,coco)with open('coco_classes.json','r') as coco:#从json文件读出readjson=json.load(coco)print(readjson)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190817.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

◢Django 自写分页与使用

目录 1、设置分页样式,并展示到浏览器 2、模拟页码 3、生成分页 4、数据显示 5、上一页下一页 6、数据库的数据分页 7、封装分页 8、使用封装好的分页 建立好app后,设置路径path(in2/,views.in2),视图def in2(request): ,HTML: in2.html…

PCL安装与使用

1 apt安装 ubuntu20.04及以上版本下可以直接通过apt方式安装pcl编译好的二进制文件,二进制安装的版本为1.10。 sudo apt update sudo apt install libpcl-dev 2 源码安装 在pcl的github上下载对应的版本进行安装: https://github.com/PointCloudLibrary/pcl/rel…

win 命令替代鼠标的操作

操作方式都是在 winR 输入框输入或者终端输入 1、快速打开 控制面板 运行control 2、快速打开 电源选项 运行powercfg.cpl 3、快速打开 网络连接 运行ncpa.cpl 4、快速打开 程序和功能 运行appwiz.cpl 5、快速打开 Windows Defender防火墙 运行Firewall.cpl 6、快速打开 鼠标 …

EXCEL——计算数据分散程度的相关函数

一、PERCENTIL函数 1.函数介绍 通常用来返回数据集给定百分点上的值。 2.函数解读 函数公式: PERCENTILE(数据, 百分点) 参数释义: 数据(必填):待处理的数组或数据区域。 百分点(必填)&…

Python 如何实现 Command(命令)模式?什么是 Command(命令)设计模式?

什么是命令设计模式? 命令模式(Command Design Pattern)是一种行为设计模式,它将请求封装成一个对象,从而允许参数化客户端对象,排队请求,或者对请求进行操作。命令模式支持撤销操作&#xff0…

SpringCache(Redis)

一、springcache是什么 springcache是spring的缓存框架,利用了AOP,实现了基于注解的缓存功能,并且进行了合理的抽象,业务代码不用关心底层是使用了什么缓存框架,只需要简单地加一个注解,就能实现缓存功能了…

Clickhouse学习笔记(11)—— 数据一致性

使用合并树引擎时,无论是ReplacingMergeTree还是SummingMergeTree,都只能保证数据的最终一致性,因为数据的去重、聚合等操作会在数据合并的期间进行,而合并会在后台以一个不确定的时间进行,因此无法预先计划&#xff1…

Python实现WOA智能鲸鱼优化算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

永达理简析:利用保险的“财务规划”功能维持退休后生活水平

现代社会环境背景下,“自养自老”已经是一种未来养老趋势,很多人会为自己准备一份长期、比较周全的保障,这样财务规划不仅会分担子女的压力,也让自己有一个长远的保障。在各种财务储蓄工具中,商业保险占据着不可取代的…

基于连续Hopfield神经网络优化——旅行商问题优化计算

大家好,我是带我去滑雪! 利用神经网络解决组合优化问题是神经网络应用的一个重要方面。所谓组合优化问题,就是在给定约束条件下,使目标函数极小(或极大)的变量组合问题。将Hopfield网络应用于求解组合优化问…

基于php js+mysql+laravel技术架构的手术麻醉管理系统源码 手麻系统源码

PHP手术麻醉管理系统源码 手麻系统源码 手术麻醉管理系统定义: 手术麻醉系统主要是由麻醉信息管理和监护设备数据采集系统两个部分组成,主要是将麻醉信息和从监护仪器上采集到的数据以及手术信息进行统计。 手术麻醉系统是指专用于住院患者手术与麻醉…

FRC-EP系列--你的汽车数据一站式管家

FRC-EP系列产品主要面向汽车动力总成测试的客户,主要应用方向为残余总线仿真及网关。本文将详细介绍FRC-EP的产品特性和应用场景。 应用场景: 汽车电子生成研发过程中,需要对汽车各个控制器进行仿真测试,典型的测试对象有&#…

5. HTML常用标签

5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>(重要) HTML提供了…

Opentracing概念介绍——Span

文章首发公众号&#xff1a;海天二路搬砖工 引言 作为分布式跟踪系统的标准化API&#xff0c;OpenTracing提供了一种通用的方式来追踪和分析分布式系统中的请求和操作。 在Opentracing中&#xff0c;Span是基本的跟踪单元&#xff0c;用于描述在分布式系统中的一个操作或事件…

基于K7的PXIPXIe数据处理板(Kintex-7 FMC载板)

基于PXI&PXIe总线架构的高性能数据预处理FMC 载板&#xff0c;板卡具有 1 个 FMC&#xff08;HPC&#xff09;接口&#xff0c;1 个 X8 PCIe 和1个PCI主机接口&#xff1b;板卡采用 Xilinx 的高性能 Kintex-7 系列 FPGA 作为实时处理器&#xff0c;实现 FMC 接口数据的采集…

文本生成高精准3D模型,北京智源AI研究院等出品—3D-GPT

北京智源AI研究院、牛津大学、澳大利亚国立大学联合发布了一项研究—3D-GPT&#xff0c;通过文本问答方式就能创建高精准3D模型。 据悉&#xff0c;3D-GPT使用了大语言模型的多任务推理能力,通过任务调度代理、概念化代理和建模代理三大模块&#xff0c;简化了3D建模的开发流程…

如何用Jmeter对数据库执行压力测试

在我看来压力测试的压测对象可以分为UI&#xff0c;接口及数据库三个部分吧&#xff0c;对界面及接口进行压测还算熟悉&#xff0c; 定位性能瓶颈&#xff0c;对数据库SQL执行压测也是需要做的。工具呢&#xff1f;还是Jmeter 1、将需要用到的链接Oracle的架包放到jmeter中 …

【计算机网络笔记】网络层服务模型——虚电路网络

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

三分钟学完Git版本控制常用指令

基本指令 git clone [url] 克隆远程仓库到本地 git clone https://gitee.com/mayun2023a/mprpc.git2.git checkout -b xxx 切换至新分支xxx&#xff08;相当于复制了remote的仓库到本地的xxx分支上) 3.修改或者添加本地代码&#xff08;部署在硬盘的源文件上&#xff09; 4.g…

php的api接口token简单实现

<?php // 生成 Token function generateToken() {$token bin2hex(random_bytes(16)); // 使用随机字节生成 tokenreturn $token; } // 存储 Token&#xff08;这里使用一个全局变量来模拟存储&#xff09; $tokens []; // 验证 Token function validateToken($token) {gl…