MySQL join原理及优化

MySQL的JOIN原理是基于索引和算法的。在执行JOIN查询时,MySQL会根据连接字段上的索引来查找匹配的记录。
这种算法在链接查询的时候,驱动表会根据关联字段的索引进行查找,当在索引上找到了符合的值,再回表进行查询,也就是只有当匹配到索引以后才会进行回表。

在进行JOIN查询时,MySQL还采用了一些优化策略来提高查询性能,例如使用嵌套循环连接算法(Nested-Loop Join)和索引优化技术。

嵌套循环连接算法按照指定的连接方式执行查询,不会自己选择驱动表。当连接字段上有索引时,MySQL会使用索引来加速查找过程

Join 算法

使用 left join 时,左边的表不一定是驱动表,优化器可能会将语句优化为join。如果需要 left join 的语义,就不能把被驱动表的字段放在 where 条件里面做等值判断或不等值判断,必须都写在 on 里面

为了便于量化分析各种Join 算法,以下创建两个表 t1 和 t2 来说明

CREATE TABLE `t2` (`id` int(11) NOT NULL,`a` int(11) DEFAULT NULL,`b` int(11) DEFAULT NULL,PRIMARY KEY (`id`),KEY `a` (`a`)
) ENGINE=InnoDB;drop procedure idata;
delimiter ;;
create procedure idata()
begindeclare i int;set i=1;while(i<=1000)doinsert into t2 values(i, i, i);set i=i+1;end while;
end;;
delimiter ;
call idata();create table t1 like t2;
insert into t1 (select * from t2 where id<=100)

可以看到,这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据

Index Nested-Loop Join

select * from t1 straight_join t2 on (t1.a=t2.a);

为了便于分析执行过程中的性能问题,我改用straight_join让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。在这个语句里,t1 是驱动表,t2 是被驱动表

如果直接使用 join 语句,MySQL 优化器可能会选择表 t1 或 t2 作为驱动表,这样会影响我们分析 SQL 语句的执行过程

INL算法步骤为先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引

Index Nested-Loop Join 算法的执行流程

查询复杂度

在INL算法程中,驱动表是走全表扫描,而被驱动表是走树搜索

假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 l o g 2 M log_2M log2M,所以在被驱动表上查一行的时间复杂度是 2 ∗ l o g 2 M 2 * log_2M 2log2M

假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。

因此整个执行过程,近似复杂度是 N + N ∗ 2 ∗ l o g 2 M N + N* 2*log_2M N+N2log2M

Simple Nested-Loop Join

select * from t1 straight_join t2 on (t1.a=t2.b);

若把SQL 语句改成这样,由于表 t2 的字段 b 上没有索引,因此再用上图的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描。复杂度是 M * N。这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行

MySQL 没有使用 Simple Nested-Loop Join 算法,而是使用了另一个叫作“Block Nested-Loop Join”的算法,简称 BNL

Block Nested-Loop Join

join_buffer是一个用于存储连接操作(join)中临时数据的缓冲区。当执行连接操作时,MySQL将从连接的表中读取数据,并临时存储在join_buffer中,以便执行连接操作的计算和比较

当被驱动表上没有可用的索引,算法的流程是这样的

  1. 把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是select *,因此是把整个表 t1 放入了内存;
  2. 扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 JOIN 条件的,作为结果集的一部分返回

Block Nested-LOOP JOIN 算法的执行流程

可以看到,在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:100*1000=10 万次

join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。 如果放不下表 t1 的所有数据话,策略很简单,就是分块放

假设,驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。

注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λ*N,显然λ的取值范围是 (0,1)。

所以,在这个算法的执行过程中:

  1. 扫描行数是 N+λNM;
  2. 内存判断 N*M 次
SNL与BNL对比

SNL/BNL 算法对系统的影响主要包括三个方面:

  1. 可能会多次扫描被驱动表,占用磁盘 IO 资源;
  2. 判断 join 条件需要执行 M*N 次对比(M、N 分别是两张表的行数),如果是大表就会占用非常多的 CPU 资源;
  3. 可能会导致 Buffer Pool 的热数据被淘汰,影响内存命中率

大表 join 操作虽然对 IO 有影响,但是在语句执行结束后,对 IO 的影响也就结束了。但是,对 Buffer Pool 的影响就是持续性的,需要依靠后续的查询请求慢慢恢复内存命中率。

为了减少这种影响,可以考虑增大join_buffer_size的值,减少对被驱动表的扫描次数

BNL 算法的执行逻辑是:将驱动表的数据全部读入内存 join_buffer 中,然后将连接操作划分为多个块,每个块包含一定数量的记录。每一行数据都跟 join_buffer 中的数据进行匹配,匹配成功则作为结果集的一部分返回。
SNL 算法的执行逻辑是:顺序取出驱动表中的每一行数据,到被驱动表去做全表扫描匹配,匹配成功则作为结果集的一部分返回

BNL算法在处理连接操作时采用了块状处理和索引优化技术(转为BKA),使得它在处理大规模数据时能够比SNL算法更快地完成查询操作

Batched Key Access

理解了 MRR 性能提升的原理,我们就能理解 MySQL 在 5.6 版本后开始引入的 Batched KEY Access(BKA) 算法了。这个 BKA 算法,其实就是对 NLJ 算法的优化

join_buffer 在 BNL 算法里的作用,是暂存驱动表的数据。在 NLJ 算法复用 join_buffer ,就优化为BKA 算法了

Batched KEY Access 流程

图中在 join_buffer 中放入的数据是 R1~R100,表示的是只会取查询需要的字段。当然,如果 JOIN buffer 放不下 R1~R100 的所有数据,就会把这 100 行数据分成多段执行上图的流程

使用 BKA 优化算法,需要在执行 SQL 语句之前,先设置

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

其中,前两个参数的作用是要启用 MRR。这么做的原因是,BKA 算法的优化要依赖于 MRR

Join 优化

Multi-Range Read 优化

Multi-Range Read优化的目的就是为了减少磁盘的随机访问,并且将随机访问转化为较为顺序的数据访问,这对于IO-bound类型的SQL查询语句可带来性能极大的提升。Multi-Range Read优化可适用于rangerefeq_ref类型的查询

MRR优化的优点及工作方式详见 MRR优化

如果随着 a 的值递增顺序查询的话,id 的值就变成随机的,那么就会出现随机访问,性能相对较差。而通过MRR优化后,会将满足条件的记录id值放入read_rnd_buffer中,再讲id进行递增排序后依次查记录并返回结果。执行流程如下图所示

因为大多数的数据都是按照主键递增顺序插入得到的,所以我们可以认为,如果按照主键的递增顺序查询的话,对磁盘的读比较接近顺序读,能够提升读性能

MRR优化后的执行流程

MRR优化后的explain 结果

BNL 转 BKA

select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

对于表 t2 的每一行,判断 JOIN 是否满足的时候,都需要遍历 join_buffer 中的所有行。因此判断等值条件的次数是 1000*100 万 =10 亿次,这个判断的工作量很大

对于这种不适合在被驱动表上建索引的情况,可以考虑使用临时表

大致思路是:

  1. 把表 t2 中满足条件的数据放在临时表 tmp_t 中;
  2. 为了让 JOIN 使用 BKA 算法,给临时表 tmp_t 的字段 b 加上索引;
  3. 让表 t1 和 tmp_t 做 JOIN 操作
create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb;
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);

总体来看,不论是在原表上加索引,还是用有索引的临时表,我们的思路都是让 JOIN 语句能够用上被驱动表上的索引,来触发 BKA 算法,提升查询性能

Hash join

业务多次查询,再到hash结构的数据表中寻找匹配的数据

对于上面计算 10 亿次那个操作,看上去有点儿傻。如果 join_buffer 里面维护的不是一个无序数组,而是一个哈希表的话,那么就不是 10 亿次判断,而是 100 万次 HASH 查找

然而 MySQL 的优化器和执行器一直被诟病的一个原因:不支持哈希 join。所以将两个表的数据分别查询,在业务中组合匹配的效率其实更高

流程大致如下:

  1. select * from t1;取得表 t1 的全部 1000 行数据,在业务端存入一个 HASH 结构,比如 C++ 里的 set、PHP 的数组这样的数据结构。
  2. select * from t2 where b>=1 and b<=2000; 获取表 t2 中满足条件的 2000 行数据。
  3. 把这 2000 行数据,一行一行地取到业务端,到 HASH 结构的数据表中寻找匹配的数据。满足匹配的条件的这行数据,就作为结果集的一行。

总结

  • .两个表按照各自的条件过滤,过滤完成之后,计算参与 join 的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表
  • 如果可以使用被驱动表的索引,join 语句还是有其优势的
  • BKA 优化是 MySQL 已经内置支持的,建议默认使用
  • BNL 算法效率低,建议你都尽量转成 BKA 算法。优化的方向就是给被驱动表的关联字段加上索引
  • 基于临时表的改进方案,对于能够提前过滤出小数据的 join 语句来说,效果还是很好的
  • MySQL 目前的版本还不支持 hash join,但你可以配合应用端自己模拟出来,理论上效果要好于临时表的方案

参考资料:

  1. MySQL 四十五讲——到底可不可以使用join?
  2. MySQL 四十五讲——join语句怎么优化
  3. MySQL 四十五讲——join的写法
  4. MRR优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190829.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式—结构型模式之代理模式

设计模式—结构型模式之代理模式 代理模式(Proxy Pattern) ,给某一个对象提供一个代理&#xff0c;并由代理对象控制对原对象的引用,对象结构型模式。 静态代理 比如我们有一个直播平台&#xff0c;提供了直播功能&#xff0c;但是如果不进行美颜&#xff0c;可能就比较冷清…

Django——orm模块创建表关系

django orm中如何创建表关系 1. 表关系分析 表与表之间的关系: 一对多 多对多 一对一 没有关系 判断表关系的方法: 换位思考用4张表举例: 图书表 出版社表 作者表 作者详情表图书和出版社是一对多的关系 外键字段建在多的那一方图书和作者是多对多的关系 需要创建第三张表来…

高防IP是什么?有什么优势?

一.高防IP的概念 高防IP是指高防机房所提供的IP段&#xff0c;一种付费增值服务&#xff0c;主要是针对网络中的DDoS攻击进行保护。用户可以通过配置高防IP&#xff0c;把域名解析到高防IP上&#xff0c;引流攻击流量&#xff0c;确保源站的稳定可靠。 二.高防IP的原理 高防I…

【编程实践】黑框框里的打字小游戏,但是汇编语言

2023-10-10 更新 续&#xff1a;将基于Nasm汇编的打字小游戏&#xff0c;移植到DOSBox 开始&#xff1a; 在学习王爽的《汇编语言》的过程中&#xff0c;我就真切地体会到编程实践对于理解的帮助。起初我没有安装书中的实验环境&#xff0c;看到100页左右就开始感觉无趣、吃力…

Spring Boot(一)

Spring Boot是一个开源的Java框架&#xff0c;旨在简化基于Java的应用程序的开发和部署过程。它提供了许多开箱即用的功能和工具&#xff0c;使开发者能够快速构建独立、可执行的、生产级别的应用程序。 以下是Spring Boot的一些主要特点和优势&#xff1a; 简化的配置&#x…

【学习笔记】Understanding LSTM Networks

Understanding LSTM Networks 前言Recurrent Neural NetworksThe Problem of Long-Term DependenciesLSTM Networks The Core Idea Behind LSTMsStep-by-Step LSTM Walk ThroughForget Gate LayerInput Gate LayerOutput Gate Layer Variants on Long Short Term MemoryConclus…

pychon/PIL/opencv/json学习过程中遇到的问题

1. 使用PIL.Image读取图片 注意&#xff1a;pytorch中对图像预处理是transforms的输入必须是PIL格式的文件&#xff0c;使用cv2读取的图片就按照第二条的代码处理&#xff08;3通道合并、归一化处理&#xff09; from PIL import Image img Image.open("test1.jpg"…

◢Django 自写分页与使用

目录 1、设置分页样式,并展示到浏览器 2、模拟页码 3、生成分页 4、数据显示 5、上一页下一页 6、数据库的数据分页 7、封装分页 8、使用封装好的分页 建立好app后&#xff0c;设置路径path(in2/,views.in2)&#xff0c;视图def in2(request): &#xff0c;HTML: in2.html…

PCL安装与使用

1 apt安装 ubuntu20.04及以上版本下可以直接通过apt方式安装pcl编译好的二进制文件,二进制安装的版本为1.10。 sudo apt update sudo apt install libpcl-dev 2 源码安装 在pcl的github上下载对应的版本进行安装&#xff1a; https://github.com/PointCloudLibrary/pcl/rel…

win 命令替代鼠标的操作

操作方式都是在 winR 输入框输入或者终端输入 1、快速打开 控制面板 运行control 2、快速打开 电源选项 运行powercfg.cpl 3、快速打开 网络连接 运行ncpa.cpl 4、快速打开 程序和功能 运行appwiz.cpl 5、快速打开 Windows Defender防火墙 运行Firewall.cpl 6、快速打开 鼠标 …

EXCEL——计算数据分散程度的相关函数

一、PERCENTIL函数 1.函数介绍 通常用来返回数据集给定百分点上的值。 2.函数解读 函数公式&#xff1a; PERCENTILE(数据, 百分点) 参数释义&#xff1a; 数据&#xff08;必填&#xff09;&#xff1a;待处理的数组或数据区域。 百分点&#xff08;必填&#xff09;&…

Python 如何实现 Command(命令)模式?什么是 Command(命令)设计模式?

什么是命令设计模式&#xff1f; 命令模式&#xff08;Command Design Pattern&#xff09;是一种行为设计模式&#xff0c;它将请求封装成一个对象&#xff0c;从而允许参数化客户端对象&#xff0c;排队请求&#xff0c;或者对请求进行操作。命令模式支持撤销操作&#xff0…

SpringCache(Redis)

一、springcache是什么 springcache是spring的缓存框架&#xff0c;利用了AOP&#xff0c;实现了基于注解的缓存功能&#xff0c;并且进行了合理的抽象&#xff0c;业务代码不用关心底层是使用了什么缓存框架&#xff0c;只需要简单地加一个注解&#xff0c;就能实现缓存功能了…

Clickhouse学习笔记(11)—— 数据一致性

使用合并树引擎时&#xff0c;无论是ReplacingMergeTree还是SummingMergeTree&#xff0c;都只能保证数据的最终一致性&#xff0c;因为数据的去重、聚合等操作会在数据合并的期间进行&#xff0c;而合并会在后台以一个不确定的时间进行&#xff0c;因此无法预先计划&#xff1…

Python实现WOA智能鲸鱼优化算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…

永达理简析:利用保险的“财务规划”功能维持退休后生活水平

现代社会环境背景下&#xff0c;“自养自老”已经是一种未来养老趋势&#xff0c;很多人会为自己准备一份长期、比较周全的保障&#xff0c;这样财务规划不仅会分担子女的压力&#xff0c;也让自己有一个长远的保障。在各种财务储蓄工具中&#xff0c;商业保险占据着不可取代的…

基于连续Hopfield神经网络优化——旅行商问题优化计算

大家好&#xff0c;我是带我去滑雪&#xff01; 利用神经网络解决组合优化问题是神经网络应用的一个重要方面。所谓组合优化问题&#xff0c;就是在给定约束条件下&#xff0c;使目标函数极小&#xff08;或极大&#xff09;的变量组合问题。将Hopfield网络应用于求解组合优化问…

基于php js+mysql+laravel技术架构的手术麻醉管理系统源码 手麻系统源码

PHP手术麻醉管理系统源码 手麻系统源码 手术麻醉管理系统定义&#xff1a; 手术麻醉系统主要是由麻醉信息管理和监护设备数据采集系统两个部分组成&#xff0c;主要是将麻醉信息和从监护仪器上采集到的数据以及手术信息进行统计。 手术麻醉系统是指专用于住院患者手术与麻醉…

FRC-EP系列--你的汽车数据一站式管家

FRC-EP系列产品主要面向汽车动力总成测试的客户&#xff0c;主要应用方向为残余总线仿真及网关。本文将详细介绍FRC-EP的产品特性和应用场景。 应用场景&#xff1a; 汽车电子生成研发过程中&#xff0c;需要对汽车各个控制器进行仿真测试&#xff0c;典型的测试对象有&#…

5. HTML常用标签

5.1 标签语义 学习标签是有技巧的&#xff0c;重点是记住每个标签的语义。简单理解就是指标签的含义。即这个标签是用来干嘛的。 根据标签的语义&#xff0c;在合适的地方给一个最为合理的标签。可以让页面结构给清晰。 5.2 标题标签 <h1>-<h6>(重要) HTML提供了…