AI大模型低成本快速定制秘诀:RAG和向量数据库

文章目录

  • 1. 前言
  • 2. RAG和向量数据库
  • 3. 论坛日程
  • 4. 购票方式

1. 前言

  当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。

  这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。

  向量数据库是一种专门用于存储和处理高维向量数据的技术。它采用高效的索引和查询算法,实现了海量数据的快速检索和分析。如此优秀的性能之外,向量数据库还可以为特定领域和任务提供定制化的解决方案。

  科技巨头诸如腾讯、阿里等公司纷纷布局向量数据库研发,力求在大模型领域实现突破。大量中小型公司也借助向量数据库的能力快速进军大模型,抢占市场先机。

  除此之外,近期发布的多个关于向量数据库的行业研究报告也表明,向量数据库将成为未来数据存储和处理的主流趋势,市场规模有望迅速扩大。

  可以说,向量数据库已然成为了推动人工智能技术发展的重要驱动力。在这场技术变革中,率先抓住向量数据库的发展机遇,就更有可能引领未来的科技潮流。

  上图为VectorDB 应用流程。对应链接为:https://www.pinecone.io/learn/vector-database/。

  目前,低成本快速定制大模型已经成为了现实。

  对很多开发者而言,微调大模型的学习门槛并不高,自学也能简单上手,但是在实际应用中还是会出现各种各样的问题。

2. RAG和向量数据库

  随着技术的不断发展,大模型已经能够帮助个人和企业提升生产力,但受限于数据实时性、隐私性和上下文长度限制等三大挑战,向量数据库和RAG应运而生。RAG,又称“检索增强生成”,独特地结合了检索和生成两个环节。它不仅仅是一个生成模型,更是一个结合了embedding向量搜索和大模型生成的系统。首先,RAG利用embedding模型将问题和知识库内容转换为向量,并基于相似性找到top-k的相关文档。接着,这些文档被提供大模型,进而生成答案。这种方法不仅提高了答案的质量,更重要的是,它也为模型的输出提供了可解释性。除了embedding检索器以外,也可结合BM25 检索器进行集成学习,从而达到更好的检索效果。

def get_retriever(self,docs_chunks,emb_chunks,emb_filter=None,k=2,weights=(0.5, 0.5),
):bm25_retriever = BM25Retriever.from_documents(docs_chunks)bm25_retriever.k = kemb_retriever = emb_chunks.as_retriever(search_kwargs={"filter": emb_filter,"k": k,"search_type": "mmr",})return EnsembleRetriever(retrievers={"bm25": bm25_retriever, "chroma": emb_retriever},weights=weights,)

  向量数据库是一种专门用于存储和查询向量数据的数据库系统,与传统数据库相比,向量数据库使用向 量化计算,能够高速地处理大规模的复杂数据;并可以处理高维数据,例如图像、音频和视频等,解决传统关系型数据库中的痛点; 同时,向量数据库支持复杂的查询操作,也可以轻松地扩展到多个节点,以处理更大规模的数据。

  如何发挥外挂知识库和向量数据库的最大价值,如何从 0 到 1 做一款向量数据库,如何设计技术架构,关键技术瓶颈是如何突破的,如何用 RAG 和向量数据库搭建企业知识库,技术实现过程中容易走哪些弯路,有没有什么避坑指南等等问题和困惑,都是技术应用和行业发展的阻碍。

  可见,对于 RAG 和向量数据库领域而言,技术实践和一线的落地场景依然需要持续探索和挖掘。

  除了最佳实践外,大模型领域一直无法回避的挑战就是变化太快。

  OpenAI 首届开发者大会在几天前彻底引爆,并被广泛定义为改变了现有的大模型格局。这会对向量数据库行业的发展有什么影响呢?RAG 又再次走到了台前?这个领域现在还值得投入吗?未来又有什么技术能替代它呢……

  类似这种关于技术未来和技术视野的思考与探讨,在快速变化的时代愈加重要,并将指导大模型领域的企业优化战略布局,引导从业者完成职业升级和职业规划。

  基于此,机器之心专门策划了以「大模型时代的向量数据库」为主题的 AI 技术论坛。

  论坛持续两天,我们不仅关注 RAG 和向量数据库的技术实现和技术突破,更聚焦产业最佳实践,看看向量数据库在大模型时代如何高效落地,有哪些应用场景。除此之外,向量数据库的未来将何去何从,企业和个人又如何能借势完成战略布局和职业升级呢?

  相信这场技术论坛一定会带给你启发和收获。其中两位主题演讲神秘嘉宾也已全部到位,分别是复旦大学张奇教授和微软亚洲研究院首席研究员陈琪老师,快来看看他们的分享内容和最新日程吧。

3. 论坛日程

  本次论坛会聚了国内众多知名高的专家学者、互联网大厂和AI独角兽的技术骨干等各界精英,以“低成本快速定制大模型”为主题,着重探讨“RAG和向量数据库的理论与实践”两个方面的问题。本次论坛内容丰富多样,不仅在理论层面上进行了深入的讲解,而且从实践层面上讲解了向量数据库、知识库等方面的最佳实践。

大模型工作原理深入讲解:

  • 大规模向量索引与向量数据库的归一化
  • 从混乱到秩序:揭秘生成式搜索背后的概率
  • GTE:预训练语言模型驱动的文本Embedding
  • jina-embeddings-v2:打破向量模型512长度限制的

大模型向量数据库、知识库的最佳实践:

  • 大语言模型知识能力获取与知识问答实践
  • 腾讯云向量数据库的技术创新与最佳实践
  • 阿里云向量检索增强大模型对话系统最佳实践
  • 百度智能云BES在大规模向量检索场景的探索实践
  • 火山引擎向量数据库VikingDB技术演进及应用
  • DingoDB多模向量数据库:大模型时代的数据引擎
  • 搜索增强型(RAG)AI原生向量数据库AwaDB技术创新与实践
  • 星环科技分布式向量数据库提升LLM知识库召回精度最佳实践
  • 利用向量数据库搭建企业知识库的优化实践
  • 使用向量数据库快速构建本地轻量图片搜索引擎
  • 向量数据库在大模型时代的应用

职业规划与未来展望:

  • 聊聊技术和职业规划
  • 大模型时代向量数据库新未来

  本场论坛重在行业技术交流,嘉宾分享均是技术干货,不夹带产品广告。(如想了解相关产品或项目,欢迎移步展位区)
在这里插入图片描述

4. 购票方式

  双十一购票优惠,双十一优惠期间,论坛 2 天通票,最低仅售 1999 元 / 张,含 2 天五星级酒店午餐自助,快来报名吧!

  官方报名链接为:https://www.bagevent.com/event/sales/l38st4zknru6v8r21rq2naznjrvqh1xs,即日起至 11 月 19 日 23:55 时,购票参会即可享门票直减 2000 元优惠福利,优惠票价先到先得。

  关于本次活动商务合作、团购、发票、内容等相关问题,欢迎添加本场活动小助手 Alice可通过邮件(jiayaning@jiqizhixin.com)或者私信本人进行咨询。

  本场论坛活动重在行业交流,如果你有任何创意或是反馈,都欢迎一起聊聊~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/191106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三国杀中的概率学问题3——王荣

前言 本文是三国杀中的概率学问题系列文章中的一篇,将详细讨论王荣吉占的期望摸牌数问题。并加上连续情形作为拓展。 值得说明的是,本文的思路受到了一篇文章的启发,在此特别鸣谢,这是文章的链接。 王荣吉占的期望摸牌数 王荣的…

深入了解JVM和垃圾回收算法

1.什么是JVM? JVM是Java虚拟机(Java Virtual Machine)的缩写,是Java程序运行的核心组件。JVM是一个虚拟的计算机,它提供了一个独立的运行环境,可以在不同的操作系统上运行Java程序。 2.如何判断可回收垃圾…

HarmonyOS开发(一):开发工具起步

1、DevEco Studio 工具下载地址:HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者 DevEco Studio基础配置 Node.jsOhpm 这两个都可以在进入IDE时在工具上选择下载安装 2、HelloWorld工程 打开DevEco,那么会进入欢迎页,点击Create Project---…

数字三角形模型 笔记

方格取数 走两次的最大值 f[k][i1][i2]来表示 k i1 j1 i2 j2; 每一个状态可由四种状态转换来,分别为 第一条路走下,第二条路走下 第一条路走下,第二条路走右 第一条路走右,第二条路走下 第一条路走右,第二条…

ChatGPT重磅升级 奢侈品VERTU推出双模型AI手机

2023年11月7日,OpenAI举办了首届开发者大会,CEO Sam Altman(山姆奥尔特曼)展示了号称“史上最强”AI的GPT-4 Turbo。它支持长达约10万汉字的输入,具备前所未有的长文本处理能力,使更复杂的互动成为可能。此外,GPT-4 Turbo还引入了跨模态API支持,可以同时处理图片、视频和声音,从…

Layer 2 真的为以太坊扩容了吗?

构建一个安全、对用户友好的去中心化网络的愿景,依赖于关键基础设施的发展。这个愿景由一个共享的经济框架支持,得到了亿万人的拥护。Layer 2 的扩展解决方案在构建这一基础和增强以太坊的能力方面起着至关重要的作用。这些项目相互协作,形成…

Arduino ESP8266使用AliyunIoTSDK.h连接阿里云物联网平台

文章目录 1、AliyunIoTSDK简介2、相关库安装3、阿里云创建产品,订阅发布4、对开源的Arduino ESP8266源代码修改5、使用阿里云点亮一个LED灯6、设备向阿里云上传温度数据7、项目源码 1、AliyunIoTSDK简介 AliyunIoTSDK是arduino的一个库,可以在arduino的…

基于若依的ruoyi-nbcio流程管理系统增加流程设计器支持自定义表单的选择与处理

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 因为之前不支持在流程设计器进行自定义业务表单的关联选择,所以这部分实现这个。 1、前端 对…

域名反查Api接口——让您轻松查询域名相关信息

在互联网发展的今天,域名作为网站的唯一标识符,已经成为了企业和个人网络营销中不可或缺的一部分。为了方便用户查询所需的域名信息,API接口应运而生。本文将介绍如何使用挖数据平台《域名反查Api接口——让您轻松查询域名相关信息》进行域名…

青少年编程学习 等级考试 蓝桥杯/NOC/GESP等比赛资料合集

一、博主愚见 在当今信息技术高速发展的时代,编程已经成为了一种必备的技能。随着社会对于科技人才的需求不断增加,青少年编程学习正逐渐成为一种趋势。为了更好地帮助青少年学习编程,提升他们的技能和素质,博主结合自身多年从事青…

c语言-数据结构-链表分割

链表分割实际上是给定一个值,遍历链表把链表中小于该值的节点与大于该值的节点分开,一般是将小于该值的节点放到链表的前面部分,大于该值的节点放在链表的后面部分。 链表分割示意图如下: 思路: 首先创建两条带哨兵位节…

Java18新增特性

前言 前面的文章,我们对Java9、Java10、Java11、Java12 、Java13、Java14、Java15、Java16、Java17 的特性进行了介绍,对应的文章如下 Java9新增特性 Java10新增特性 Java11新增特性 Java12新增特性 Java13新增特性 Java14新增特性 Java15新增特性 Java…

JDK并发修改异常的一个“BUG“

很多电商公司早期的架构都是基于PHP,所以我身边会有很多很厉害的PHP老哥,但现在都在写Java。昨天看到他在看Java的并发修改异常,正打算秀一波操作,却被他的一个问题难住了: public class ForeachTest {public static …

数据分析-numpy

numpy numpy numpy简介优点下载ndarray的属性输出数据类型routines 函数ndarray对象的读写操作ndarray的级联和切分级联切分 ndarray的基本运算广播机制(Broadcast)ndarry的聚合操作数组元素的操作numpy 数学函数numpy 查找和排序 写在最后面 简介 nump…

CSS 滚动捕获 scroll-snap-type

scroll-snap-type 语法实例 捕获轴 y 捕获严格程度 mandatory捕获轴 y 捕获严格程度 proximity同理看下捕获轴 x 一些注意事项兼容性 scroll-snap-type 用来指定一个滚动容器(scroll container)是否是滚动捕获容器(scroll snap container)、捕获的严格程度以及在什么方向上执行…

61基于matlab的GWO算法的参数工具箱,图形界面,目标函数的默认名称为CostFunction。

基于matlab的GWO算法的参数工具箱,图形界面,目标函数的默认名称为CostFunction。如果您查看了CostFunction.m文件,成本函数获取向量([x1 x2…xn])中的变量并返回目标值。可以在该文件中编写目标函数,也可以…

【计算机网络笔记】IP子网划分与子网掩码

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

Perl爬虫程序的框架

Perl爬虫程序的框架,这个框架可以用来爬取任何网页的内容。 perl #!/usr/bin/perl use strict; use warnings; use LWP::UserAgent; use HTML::TreeBuilder; # 创建LWP::UserAgent对象 my $ua LWP::UserAgent->new; # 设置代理信息 $ua->proxy(http, ); …

ZooKeeper+Kafka+ELK+Filebeat集群搭建实现大批量日志收集和展示

大致流程:将nginx 服务器(web-filebeat)的日志通过filebeat收集之后,存储到缓存服务器kafka,之后logstash到kafka服务器上取出相应日志,经过处理后写入到elasticsearch服务器并在kibana上展示。 一、集群环…

Python实现WOA智能鲸鱼优化算法优化BP神经网络分类模型(BP神经网络分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…