部署百川大语言模型Baichuan2

Baichuan2是百川智能推出的新一代开源大语言模型,采用 2.6 万亿 Tokens 的高质量语料训练。在多个权威的中文、英文和多语言的通用、领域 benchmark 上取得同尺寸最佳的效果。包含有 7B、13B 的 Base 和 Chat 版本,并提供了 Chat 版本的 4bits 量化。

模型下载

基座模型

Baichuan2-7B-Base

https://huggingface.co/baichuan-inc/Baichuan2-7B-Baseicon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-7B-BaseBaichuan2-13B-Base

https://huggingface.co/baichuan-inc/Baichuan2-13B-Baseicon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-13B-Base

对齐模型

Baichuan2-7B-Chat

https://huggingface.co/baichuan-inc/Baichuan2-7B-Chaticon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-7B-ChatBaichuan2-13B-Chat

https://huggingface.co/baichuan-inc/Baichuan2-13B-Chaticon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat

对齐模型 4bits 量化

Baichuan2-7B-Chat-4bits

https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bitsicon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat-4bitsBaichuan2-13B-Chat-4bits

https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bitsicon-default.png?t=N7T8https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat-4bits

拉取代码

git clone https://github.com/baichuan-inc/Baichuan2

安装依赖

pip install -r requirements.txt

调用方式

Python代码调用

Chat 模型推理方法示例:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat")
messages = []
messages.append({"role": "user", "content": "解释一下“温故而知新”"})
response = model.chat(tokenizer, messages)
print(response)

Base 模型推理方法示范

from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True)
inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
inputs = inputs.to('cuda:0')
pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))

模型加载指定 device_map='auto',会使用所有可用显卡。

如需指定使用的设备,可以使用类似 export CUDA_VISIBLE_DEVICES=0,1(使用了0、1号显卡)的方式控制。

命令行方式

python cli_demo.py

本命令行工具是为 Chat 场景设计,不支持使用该工具调用 Base 模型。

网页 demo 方式

依靠 streamlit 运行以下命令,会在本地启动一个 web 服务,把控制台给出的地址放入浏览器即可访问。

streamlit run web_demo.py

本网页demo工具是为 Chat 场景设计,不支持使用该工具调用 Base 模型。

量化方法

Baichuan2支持在线量化和离线量化两种模式。

在线量化

对于在线量化,baichuan2支持 8bits 和 4bits 量化,使用方式和 Baichuan-13B 项目中的方式类似,只需要先加载模型到 CPU 的内存里,再调用quantize()接口量化,最后调用 cuda()函数,将量化后的权重拷贝到 GPU 显存中。实现整个模型加载的代码非常简单,以 Baichuan2-7B-Chat 为例:

8bits 在线量化:

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(8).cuda() 

4bits 在线量化:

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True)
model = model.quantize(4).cuda() 

需要注意的是,在用 from_pretrained 接口的时候,用户一般会加上 device_map="auto",在使用在线量化时,需要去掉这个参数,否则会报错。

离线量化

为了方便用户的使用,baichuan2提供了离线量化好的 4bits 的版本 Baichuan2-7B-Chat-4bits,供用户下载。 用户加载 Baichuan2-7B-Chat-4bits 模型很简单,只需要执行:

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat-4bits", device_map="auto", trust_remote_code=True)

对于 8bits 离线量化,baichuan2没有提供相应的版本,因为 Hugging Face transformers 库提供了相应的 API 接口,可以很方便的实现 8bits 量化模型的保存和加载。用户可以自行按照如下方式实现 8bits 的模型保存和加载:

model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto", trust_remote_code=True)
model.save_pretrained(quant8_saved_dir)
model = AutoModelForCausalLM.from_pretrained(quant8_saved_dir, device_map="auto", trust_remote_code=True)

CPU 部署

Baichuan2 模型支持 CPU 推理,但需要强调的是,CPU 的推理速度相对较慢。需按如下方式修改模型加载的方式:

model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float32, trust_remote_code=True)

模型微调

依赖安装

git clone https://github.com/baichuan-inc/Baichuan2.git
cd Baichuan2/fine-tune
pip install -r requirements.txt

如需使用 LoRA 等轻量级微调方法需额外安装 peft

如需使用 xFormers 进行训练加速需额外安装 xFormers

单机训练

hostfile=""
deepspeed --hostfile=$hostfile fine-tune.py  \--report_to "none" \--data_path "data/belle_chat_ramdon_10k.json" \--model_name_or_path "baichuan-inc/Baichuan2-7B-Base" \--output_dir "output" \--model_max_length 512 \--num_train_epochs 4 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--save_strategy epoch \--learning_rate 2e-5 \--lr_scheduler_type constant \--adam_beta1 0.9 \--adam_beta2 0.98 \--adam_epsilon 1e-8 \--max_grad_norm 1.0 \--weight_decay 1e-4 \--warmup_ratio 0.0 \--logging_steps 1 \--gradient_checkpointing True \--deepspeed ds_config.json \--bf16 True \--tf32 True

轻量化微调

代码已经支持轻量化微调如 LoRA,如需使用仅需在上面的脚本中加入以下参数:

--use_lora True

LoRA 具体的配置可见 fine-tune.py 脚本。

使用 LoRA 微调后可以使用下面的命令加载模型:

from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained("output", trust_remote_code=True)


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/192261.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络运维Day16

文章目录 Docker简介什么是容器命名空间: Docker 的优缺点 Docker安装Docker镜像管理什么是镜像镜像管理 Docker容器管理运行容器容器启动、停止、重启拷贝文件进入容器容器与应用 DockerfileDockerfile 语法案例 总结 Docker简介 什么是容器 容器是用来装东西的&a…

Python-Python高阶技巧:HTTP协议、静态Web服务器程序开发、循环接收客户端的连接请求

版本说明 当前版本号[20231114]。 版本修改说明20231114初版 目录 文章目录 版本说明目录HTTP协议1、网址1.1 网址的概念1.2 URL的组成1.3 知识要点 2、HTTP协议的介绍2.1 HTTP协议的概念及作用2.2 HTTP协议的概念及作用2.3 浏览器访问Web服务器的过程 3、HTTP请求报文3.1 H…

红队专题-从零开始VC++C/S远程控制软件RAT-MFC-超级终端

红队专题 招募六边形战士队员[16]超级终端(1)消息 宏的定义映射cmdshell.cpp重载 构造函数Onsize 随窗口大小事件回车键发送命令添加字符转换类 StringToTransform [17]超级终端(2)接受命令创建m_cmd c类发送 接收客户端远端进程关闭 招募六边形战士队员 一起学习 代码审计、安…

景联文科技:驾驭数据浪潮,赋能AI产业——全球领先的数据标注解决方案供应商

根据IDC相关数据统计,全球数据量正在经历爆炸式增长,预计将从2016年的16.1ZB猛增至2025年的163ZB,其中大部分是非结构化数据,被直接利用,必须通过数据标注转化为AI可识别的格式,才能最大限度地发挥其应用价…

网络运维Day17

文章目录 什么是数据库MySQL介绍实验环境准备构建MySQL服务连接数据库修改root密码 数据库基础常用的SQL命令分类SQL命令使用规则MySQL基本操作创建库创建表查看表结构 记录管理命令 数据类型数值类型 数据类型日期时间类型时间函数案例枚举类型 约束条件案例修改表结构添加新字…

C++二分查找算法:最大为 N 的数字组合

涉及知识点 二分查找 数学 题目 给定一个按 非递减顺序 排列的数字数组 digits 。你可以用任意次数 digits[i] 来写的数字。例如,如果 digits [‘1’,‘3’,‘5’],我们可以写数字,如 ‘13’, ‘551’, 和 ‘1351315’。 返回 可以生成的…

基于群居蜘蛛算法优化概率神经网络PNN的分类预测 - 附代码

基于群居蜘蛛算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于群居蜘蛛算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于群居蜘蛛优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

python语言的由来与发展历程

Python语言的由来可以追溯到1989年,由Guido van Rossum(吉多范罗苏姆)创造。在他的业余时间里,Guido van Rossum为了打发时间,决定创造一种新的编程语言。他受到了ABC语言的启发,ABC语言是一种过程式编程语…

PHP 服装销售管理系统mysql数据库web结构layUI布局apache计算机软件工程网页wamp

一、源码特点 PHP 服装销售管理系统是一套完善的web设计系统mysql数据库 ,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 php服装销售管理系统1 二、功能介绍 (1)员工管理:对员工信息…

【电子通识】USB端口颜色编码标识

不知道你有没有发现 USB 口有不同的颜色,黑色、蓝色、紫色、红色、黄色等等,你知道不同颜色的 USB 口各代表什么意思吗? 这些颜色不是USB规范所要求的,设备制造商之间也不一致。例如,Intel使用橙色表示充电端口&#…

DAY54 392.判断子序列 + 115.不同的子序列

392.判断子序列 题目要求:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是…

科研学习|科研软件——有序多分类Logistic回归的SPSS教程!

一、问题与数据 研究者想调查人们对“本国税收过高”的赞同程度:Strongly Disagree——非常不同意,用“0”表示;Disagree——不同意,用“1”表示;Agree--同意,用“2”表示;Strongly Agree--非常…

并发编程由浅及深(一)

并发编程重要吗?当然重要,因为并发在我们的项目中真实存在,如果你不能充分了解它那么很可能造成严重的生产事故。最近隔壁项目组出了一个问题,每次请求接口之后都发现线程固定增加了5个,而且线程数一直增加没有减少&am…

修炼k8s+flink+hdfs+dlink(七:flinkcdc)

一 :flinkcdc官网链接。 https://ververica.github.io/flink-cdc-connectors/release-2.1/content/about.html 二:在flink中添加jar包。 在flink lib目录下增加你所需要的包。 https://kdocs.cn/join/gv467qi?f101 邀请你加入共享群「工作使用重要工具…

【uniapp】确认弹出框,选择确定和取消

代码如下&#xff1a; <view style"display: flex; justify-content: space-around;"><button class"button" click"submit">t提交</button> </view>submit(){let thatthisuni.showModal({title: 提示&#xff1a;,con…

react Antd3以下实现年份选择器 YearPicker

项目antd版本低&#xff0c;没有直接可使用的年份选择器&#xff0c;参考此篇&#xff08;使用antd实现年份选择器控件 - 掘金&#xff09; 一开始在state里设置了time&#xff1a; this.state {isopen: false,time: null } 在类似onChange事件里this.setState({time: valu…

【fbtft】如何添加fbtft驱动

获取lcd ic的datasheet&#xff0c;或者直接找到其他平台&#xff08;linux&#xff0c;stm32&#xff0c;esp32&#xff09;的驱动 我用的是合宙的esp32驱动&#xff0c;注意是c语言的&#xff0c;合宙上层用lua封装了&#xff0c;需要找到sdk源码。 源码路径&#xff1a; …

kafka单节点创建 topic 超时

1.根据之前的知道&#xff0c;安装kafka的时候改了config的server.properies文件中的listeners配置 之前这一行是没有注释掉的&#xff0c;结果创建topic的时候时钟报错连接超时 结果资料&#xff0c;发现就是因为listeners的问题 https://blog.csdn.net/weixin_42133361/art…

Jenkins中强制停止停不下来的job

# Script console 执行脚本 Jenkins 的提供了 script console 的功能&#xff0c;允许你写一些脚本&#xff0c;来调度 Jenkins 执行一些任务。 我们就可以利用 script console 来强制停止 job 执行。 首先进入 Jenkins 的 script console 页面&#xff1a; script console 路…

解决Chrome无法自动同步书签

前提&#xff1a;&#xff08;要求能正常访问google&#xff09; 准备一个谷歌账号 安装Chrome浏览器 开启集装箱插件&#xff08;或者其他能访问谷歌的工具&#xff09; 步骤&#xff1a;&#xff08;使用集装箱插件/能正常访问谷歌的其他工具&#xff09; 下载安装使用“集…