竞赛 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录

  • 0 简介
  • 1 基于 Keras 用 LSTM 网络做时间序列预测
  • 2 长短记忆网络
  • 3 LSTM 网络结构和原理
    • 3.1 LSTM核心思想
    • 3.2 遗忘门
    • 3.3 输入门
    • 3.4 输出门
  • 4 基于LSTM的天气预测
    • 4.1 数据集
    • 4.2 预测示例
  • 5 基于LSTM的股票价格预测
    • 5.1 数据集
    • 5.2 实现代码
  • 6 lstm 预测航空旅客数目
    • 数据集
    • 预测代码
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

future_target = 72
x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,TRAIN_SPLIT, past_history,future_target, STEP)
x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],TRAIN_SPLIT, None, past_history,future_target, STEP)

划分数据集

train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()

绘制样本点数据

def multi_step_plot(history, true_future, prediction):plt.figure(figsize=(12, 6))num_in = create_time_steps(len(history))num_out = len(true_future)plt.plot(num_in, np.array(history[:, 1]), label='History')plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',label='True Future')if prediction.any():plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',label='Predicted Future')plt.legend(loc='upper left')plt.show()
for x, y in train_data_multi.take(1):multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

multi_step_model = tf.keras.models.Sequential()
multi_step_model.add(tf.keras.layers.LSTM(32,return_sequences=True,input_shape=x_train_multi.shape[-2:]))
multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
multi_step_model.add(tf.keras.layers.Dense(72))multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,steps_per_epoch=EVALUATION_INTERVAL,validation_data=val_data_multi,validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
plt.rcParams['font.sans-serif']=['SimHei']#显示中文
plt.rcParams['axes.unicode_minus']=False#显示负号def load_data():test_x_batch = np.load(r'test_x_batch.npy',allow_pickle=True)test_y_batch = np.load(r'test_y_batch.npy',allow_pickle=True)return (test_x_batch,test_y_batch)#定义lstm单元
def lstm_cell(units):cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanhreturn cell#定义lstm网络
def lstm_net(x,w,b,num_neurons):#将输入变成一个列表,列表的长度及时间步数inputs = tf.unstack(x,8,1)cells = [lstm_cell(units=n) for n in num_neurons]stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)return tf.matmul(outputs[-1],w) + b#超参数
num_neurons = [32,32,64,64,128,128]#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())if __name__ == '__main__':#开启交互式Sessionsess = tf.InteractiveSession()saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')#载入数据test_x,test_y = load_data()#预测predicts = sess.run(pred,feed_dict={x:test_x})predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准#可视化plt.plot(predicts,'r',label='预测曲线')plt.plot(test_y,'g',label='真实曲线')plt.xlabel('第几天/days')plt.ylabel('开盘价(归一化)')plt.title('股票开盘价曲线预测(测试集)')plt.legend()plt.show()#关闭会话sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import os# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4   # 序列长度
n_feature = 12   # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):tmp_x = data[i:i+seq_length, :]tmp_y = data[i+seq_length, :]trainData_x.append(tmp_x)trainData_y.append(tmp_y)# model
class Net(nn.Module):def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):super(Net, self).__init__()self.in_dim = in_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.n_layer = n_layerself.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)self.linear = nn.Linear(hidden_dim, output_dim)def forward(self, x):_, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state# h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)# n_direction根据是“否为双向”取值为1或2h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)return h_outtrain = True
if train:model = Net()loss_func = torch.nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# trainfor epoch in range(EPOCH):total_loss = 0for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)       # output's shape (1,12)output = torch.squeeze(output)loss = loss_func(output, torch.tensor(trainData_y[iteration]))optimizer.zero_grad()   # clear gradients for this training iterationloss.backward()         # computing gradientsoptimizer.step()        # update weightstotal_loss += lossif (epoch+1) % 20 == 0:print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))# torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')else:# model = torch.load('flight_model.pth')model = Net()checkpoint = torch.load('checkpoint.pth.tar')model.load_state_dict(checkpoint['state_dict'])# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)X = torch.tensor(X).float()X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsizeoutput = model(X)             # output's shape (1,12)output = torch.squeeze(output)predict.append(output.data.numpy())# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/192299.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vatee万腾的数字化掌舵:Vatee科技引领未来的新高度

随着数字化时代的到来,Vatee万腾以其卓越的科技决策力成为引领潮流的掌舵者。 Vatee万腾通过对科技前沿的不懈探索,站在了数字化创新的最前沿。其领先的科技团队致力于发掘并应用最新的数字技术,为用户提供卓越的数字化体验。 Vatee万腾以其…

HTML 之常用标签的介绍

文章目录 h标签p标签a标签img 标签table、tr、td标签ul、ol、li 标签div 标签 h标签 <h> 标签用于定义 HTML 文档中的标题&#xff0c;其中 h 后面跟着一个数字&#xff0c;表示标题的级别。HTML 提供了 <h1> 到 <h6> 六个不同级别的标题&#xff0c;其中 &…

Linux socket编程(3):利用fork实现服务端与多个客户端建立连接

上一节&#xff0c;我们实现了一个客户端/服务端的Socket通信的代码&#xff0c;在这个例子中&#xff0c;客户端连接上服务端后发送一个字符串&#xff0c;而服务端接收到字符串并打印出来后就关闭所有套接字并退出了。 上一节的代码较为简单&#xff0c;在实际的应用中&…

详解 KEIL C51 软件的使用·设置工程·编绎与连接程序

详解 KEIL C51 软件的使用建立工程-CSDN博客 2. 设置工程 (1)在图 2-15 的画面中点击 会弹出如图 2-16 的对话框.其中有 10 个选择页.选择“Target” 项,也就是图 2-16 的画面. 图 2-16 在图 2-16 中,箭头所指的是晶振的频率值,默认是所选单片机最高的可用频率值.该设置值与单…

Intellij IDEA 内存设置的问题 及解决

解决方案&#xff1a; 在IDEA上运行较大项目时&#xff0c;编译量很大&#xff0c;可能会报出 Error:java: java.lang.OutOfMemoryError: Java heap space 的错误&#xff0c;解决方法如下&#xff1a; java.lang.OutOfMemoryError是内存不足导致的&#xff0c;因此需要修改Id…

PSP - 蛋白质复合物结构预测 Template 的 Multichain Mask 2D (二维多链掩码)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/134406459 在 蛋白质复合物结构预测 中&#xff0c;AlphaFold2 Multimer 的 Multichain Mask 2D 对于 模版特征 (Template) 的影响较大&#xff0…

1688往微信小程序自营商城铺货商品采集API接口

一、背景介绍 随着移动互联网的快速发展&#xff0c;微信小程序作为一种新型的电商形态&#xff0c;正逐渐成为广大商家拓展销售渠道、提升品牌影响力的重要平台。然而&#xff0c;对于许多传统企业而言&#xff0c;如何将商品信息快速、准确地铺货到微信小程序自营商城是一个…

网络编程 —— TCP 和 UDP 编程详解

目录 网络编程主要函数介绍 1. socket 函数 2. bind 函数 3. listen 函数 4. accept 函数 5. connect 函数 6. send 函数 7. recv 函数 8. recvfrom 函数 9. sendto 函数 TCP 和 UDP 原理上的区别 TCP 编程 服务端代码&#xff1a; 客户端代码&#xff1a; UDP 编…

Android设计模式--工厂模式

一&#xff0c;定义 工厂模式与Android 设计模式--单例模式-CSDN博客&#xff0c;Android设计模式--Builder建造者模式-CSDN博客&#xff0c;Android设计模式--原型模式-CSDN博客 一样&#xff0c;都是创建型设计模式。 工厂模式就是定义一个用于创建对象的接口&#xff0c;让…

225.用队列实现栈(LeetCode)

思路 思路&#xff1a;用两个队列实现栈后进先出的特性 &#xff0c;两个队列为空时&#xff0c;先将数据都导向其中一个队列。 当要模拟出栈时&#xff0c;将前面的元素都导入另一个空队列&#xff0c;再将最后一个元素移出队列 实现 实现&#xff1a; 因为C语言没有库可以…

uni-app报错“本应用使用HBuilderX x.x.x 或对应的cli版本编译,而手机端SDK版本是x.x.x不匹配的版本可能造成应用异常”

uniapp开发的一个跨平台软件&#xff0c;在安卓模拟器上启动的时候报警告&#xff1a; 官方给的解释&#xff1a;uni-app运行环境版本和编译器版本不一致的问题 - DCloud问答 解决办法有两个 方法一&#xff1a;添加忽略警告的配置 项目根目录下找到 manifest.json&#xf…

LeetCode算法心得——高级访客(模拟枚举+小窗口)

大家好&#xff0c;我是晴天学长&#xff0c;今天的周赛第二题&#xff0c;需要的小伙伴可以关注支持一下哦&#xff01;后续会继续更新的。&#x1f4aa;&#x1f4aa;&#x1f4aa; 1) .高级访客 给你一个长度为 n 、下标从 0 开始的二维字符串数组 access_times 。对于每个 …

Spark SQL编程

1. Spark SQL概述 1.1 什么是Spark SQL Spark SQL是用于结构化数据处理的Spark模块。与基本的Spark RDD API不同&#xff0c;Spark SQL提供的接口为Spark提供了有关数据结构和正在执行的计算的更多信息。在内部&#xff0c;Spark SQL使用这些额外的信息来执行额外的优化。与Spa…

一文讲清生产质量场景的数据分析思路及案例实战

今天&#xff0c;顺着制造业数据分析这个大主题&#xff0c;我们来讲讲质量管理数据分析。   说起质量管理&#xff0c;就是对所生产的产品质量进行管理&#xff0c;其最终目的就是保证客户收到的产品质量&#xff0c;提高客户满意度&#xff0c;减少退货和维修的数量。质量管…

Netty Review - 从BIO到NIO的进化推演

文章目录 BIODEMO 1DEMO 2小结论单线程BIO的缺陷BIO如何处理并发多线程BIO服务器的弊端 NIONIO要解决的问题模拟NIO方案一&#xff1a; &#xff08;等待连接时和等待数据时不阻塞&#xff09;方案二&#xff08;缓存Socket&#xff0c;轮询数据是否准备好&#xff09;方案二存…

【计算机网络笔记】CIDR与路由聚合

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

日历应用程序 BusyCal mac中文版软件特点

BusyCal mac是一款日历应用程序&#xff0c;它可以帮助用户轻松地管理日程安排、事件提醒、会议安排等。BusyCal 支持 macOS 和 iOS 平台&#xff0c;并且可以与 iCloud、Google 日历、Exchange 等多种日历服务进行同步。 BusyCal mac软件特点 强大的日历功能&#xff1a;Busy…

单链表经典OJ题(三)

目录 1、反转链表 2、合并两个有序链表 3、链表的中间结点 4、环形链表的约瑟夫问题 5、移除链表元素 6、移除元素 1、反转链表 206. 反转链表 - 力扣&#xff08;LeetCode&#xff09; 翻转链表的实质就是更改当前结点的前驱结点和后继结点 假设原链表为:1->2->…

【nlp】2.4 GRU模型

GRU模型 1 GRU介绍2 GRU的内部结构图2.1 GRU结构分析2.2 Bi-GRU介绍2.3 使用Pytorch构建GRU模型2.4 GRU优缺点3 RNN及其变体1 GRU介绍 GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆…

Day29力扣打卡

打卡记录 美丽塔 II&#xff08;前后缀分解 单调栈&#xff09; 链接 大佬的题解 class Solution:def maximumSumOfHeights(self, a: List[int]) -> int:n len(a)suf [0] * (n 1)st [n] # 哨兵s 0for i in range(n - 1, -1, -1):x a[i]while len(st) > 1 and …