一本了解生成式人工智能

上周,发了一篇关于大语言模型+图数据库技术相结合的文章,引起了很多朋友的兴趣。当然了,这项技术本身就让俺们很兴奋,比如我就是从事图研发的,当然会非常关注它在图领域的应用与相互促就啦。

纵观人类文明历史,从第一次工业革命之后,技术成为了改变世界进程的引擎,生产力和生产关系进入了一个全新的时期。如从美索不达比亚第一株被驯服的小麦,人类从原始狩猎采集转为种植和定居,蒸汽机改变了人类对能源的依赖模式,人类从此步入城市化和工业化。时至今日,我们又在经历一个新的创新周期——人工智能驱动的数字化时代(虽然很多人都在担心智能伦理方面的问题,但并没有影响各界对该技术的热情和关注。)

本文围绕以下几点聊聊,当是对前一篇文章《LLM+Graph:大语言模型与图数据库技术的协同》的一个前传吧。

· 啥是生成式人工智能

· 生成式人工智能的历史

· 法学硕士又是神马东西?

· 生成式人工智能都有啥类型和关键特征?

· 有什么局限性? 和图数据库技术的结合

一、啥是生成式人工智能

生成式人工智能是一种先进技术,能够生成文本、语音、视觉甚至合成数据形式的内容。

它利用深度学习模型和大型语言模型来完成创建新颖内容的任务。

它绝对不仅仅是进行上下文对话,还包括定制建议、直观的解决方案等等。其应用广泛分布在从高科技到农业和消费品的各个行业。

Gartner将生成式 AI 置于 2023 年新兴技术成熟度曲线期望最高的位置

德勤估计,到 2032 年,生成式人工智能的市场规模将达到 200B 美元。这占人工智能总支出的约 20%,高于目前的约 5%

二、生成式人工智能的历史

其历史至少可以追溯到 70 年前,当时人类真正开始怀疑机器是否有能力像人类一样思考和处理。

20 世纪 50 年代:文本分析 — 人工智能的黎明

20世纪50年代至60年代初,人工智能(AI)领域仍处于起步阶段。研究人员正在探索创造能够模拟人类智能的机器的可能性。这个方向最早的努力之一是文本分析。这个时代见证了用于处理和分析文本数据的基本计算机程序的发展。早期的文本分析系统主要专注于信息检索和关键字提取等简单任务。这个想法是让计算机能够以类似于人类理解的方式理解和操作文本。虽然这些努力在当时具有开创性,但它们的能力有限,并且缺乏我们今天与人工智能相关的复杂程度。

20 世纪 60 年代:基于规则的系统和知识库

在 20 世纪 60 年代后半叶和整个 70 年代,人工智能研究转向基于规则的系统和知识库。研究人员试图使用明确的规则和逻辑推理将人类知识和专业知识编码到计算机程序中。这种方法导致了专家系统的发展,该系统能够通过遵循预定义的规则来解决特定问题。专家系统标志着人工智能向前迈出了重要一步,因为它们证明计算机可以执行需要人类专业知识的任务。然而,它们受到大量手动规则编写的需要和对新领域的有限适应性的限制。

20 世纪 80 年代:自然语言处理出现

20 世纪 80 年代和 90 年代见证了自然语言处理 (NLP) 的出现,这是人工智能中的一个关键领域,旨在使机器能够理解和生成人类语言。研究人员开始开发更先进的技术来解析和分析文本,为机器翻译、语音识别和情感分析等应用铺平道路。NLP 系统在很大程度上仍然是基于规则的,依赖于语法和句法规则。这些系统能够处理比早期文本分析更复杂的语言任务,但它们距离实现人类水平的语言理解还很远。

2000 年代:机器学习和大数据革命

世纪之交标志着随着机器学习的兴起和大量数字数据的出现,人工智能研究发生了重大转变。事实证明,机器学习算法,特别是神经网络,在解决各种人工智能任务(包括与文本和语言相关的任务)方面非常有效。这个时代催生了“大数据”的概念和大规模数据分析的发展。随着深度学习等技术的出现和海量数据集的出现,人工智能模型越来越能够理解和生成人类语言。

2020 年代:GPT-3 和生成式 AI 的突破

2020年代,世界见证了GPT-3(生成式预训练变压器3),这是一种革命性的人工智能模型,标志着人工智能和自然语言处理领域的一个重要里程碑。GPT-3 在大量文本数据上进行了预训练,可以生成高度连贯且上下文相关的文本。

GPT 的发展仍在继续,推出了运行 ChatGPT 的 GPT 3.5 和最新版本的 GPT 4。

三、法学硕士又是神马东西?

如果不了解大型语言模型,那么关于生成式人工智能的讨论就是不完整的,人们简称为法学硕士。大型语言模型是在具有大量参数的大型未标记数据集上进行训练的。GPT-3 经过超过 1750 亿个参数的训练!

值得一提的是,LLM(语言模型)和生成式人工智能是相关的概念,但它们在侧重点、能力和应用方面存在明显差异。

一些众所周知的法学硕士是:

Open AI 的 GPT 3、3.5 和 4

谷歌的 LaMDA 和 PaLM

Meta 的 LLaMA

NVidia 的 NeMO 法学硕士

在这个列表中,Meta 的 LLaMA 是一个开源 LLM,世界各地的开发人员都可以利用它来创建可定制的私有模型。

四、生成式人工智能都有啥类型和关键特征?

生成式 AI 模型是人工智能 (AI) 模型的一个子集,旨在生成与现有数据相似或遵循现有数据中的模式的新数据。生成式 AI 模型不同于其他专注于分类、预测或强化学习的 AI 模型。

以下是生成式人工智能模型的一些关键特征和类型:

数据生成:生成式人工智能模型能够创建模仿训练数据中观察到的模式或风格的新内容。该内容可以采用多种形式,包括文本、图像、音乐等。

无监督学习:许多生成模型采用无监督学习技术,模型在没有明确标签或目标的情况下学习数据中的模式和结构。这使它们能够生成数据,而不需要应生成的具体示例。

可变性:生成模型通常以其产生不同输出的能力为特征。如它们可以生成不同风格的艺术,以不同方式重新表述相同的文本段落,或者图像的多个版本。

一些常见类型的生成人工智能模型:

生成对抗网络(GAN):GAN 由两个处于竞争关系的神经网络(生成器和判别器)组成。生成器创建数据,而鉴别器评估该数据的真实性。这种对抗性过程导致生成器提高了创建真实数据的能力。GAN 已广泛用于图像生成、风格迁移和内容创建。

变分自动编码器 (VAE):VAE 是基于概率建模原理的生成模型。他们的目标是了解数据的潜在概率分布。VAE 通常用于图像生成、数据压缩和图像重建。

循环神经网络 (RNN):RNN 是一种专门为序列数据(例如文本和时间序列数据)设计的神经网络架构。它们用于文本生成、机器翻译和语音识别。然而,传统的 RNN 在捕获长期依赖性方面存在局限性。

长短期记忆 (LSTM) 网络:LSTM 是一种特殊类型的 RNN,可以捕获顺序数据中的长程依赖性。事实证明,它们在自然语言处理任务中非常有效,包括语言建模、文本生成和情感分析。

生成式预训练 Transformer (GPT):GPT 模型是生成人工智能领域的最新突破。这些模型利用 Transformer 架构和对文本数据的大规模预训练来生成连贯且上下文相关的文本。他们擅长各种自然语言理解和生成任务,包括聊天机器人、内容生成、翻译等。

五、有什么局限性? 和图数据库技术怎么结合?

以下是大模型局限性的几个表现列举:

模型的知识受限于它所训练的数据。见下图:

黑盒化,不可解释性:大模型作为黑盒模型,它们以参数的形式隐式地表示知识。由于大模型生成的结果中没有包含任何来源或参考,我们很难解释或验证其可信度。这严重影响了大模型的应用,尤其是在医疗诊断、金融咨询和法律判断等高风险的场景中。另一个挑战在于,大模型是为了一般用途而训练的,企业专有、保密或敏感的未公开数据并不在它们的知识范围内。

……

下面的配图直观的展示了现有大模型的局限性,以及图数据库如何增强大模型。

大模型无法实现(或替代)图数据库的深层检索

图数据库的海量结构化(深度、精准、白盒化)查询可以直接增强 LLM大模型能力

与Graph相协同后,这个关联成吉思汗和牛顿的4跳因果关系横跨东西方,跨越了400年的历史。通过图的深度穿透和因果关系搜索,生动地呈现在我们眼前了,见下图:

时至今日,很多研究人员已经认识到大模型和图技术之间固有的互补性。通过结合大模型的文本理解能力和图的结构化推理能力,能够整体增强AI系统的功能性、智能性和可解释性。 更多大模型与“图”的实践应用,本文不多赘述,感兴趣的盆友,可以阅读文章——嬴图 | LLM+Graph:大语言模型与图数据库技术的协同 - Ultipa Graph

文/Emma

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/192755.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Postman+Newman+Jenkins实现接口测试持续集成

近期在复习Postman的基础知识,在小破站上跟着百里老师系统复习了一遍,也做了一些笔记,希望可以给大家一点点启发。 1.新建一个项目 2.设置自定义工作空间 3.执行windows的批处理命令 4.执行系统的Groovy脚本 5.生成的HTML的报告集成到Jenkin…

大模型的全面回顾,看透大模型 | A Comprehensive Overview of Large Language Models

大模型的全面回顾:A Comprehensive Overview of Large Language Models 返回论文和资料目录 论文地址 1.导读 相比今年4月的中国人民大学发表的大模型综述,这篇综述角度更侧重于大模型的实现,更加硬核,更适合深入了解大模型的一…

MongoDB分片集群搭建

----前言 mongodb分片 一般用得比较少,需要较多的服务器,还有三种的角色 一般把mongodb的副本集应用得好就足够用了,可搭建多套mongodb复本集 mongodb分片技术 mongodb副本集可以解决数据备份、读性能的问题,但由于mongodb副本集是…

ai语音电销机器人电销行业要怎么降低封号率?

工信部对电话营销电话的管控越来越严格,企业电销行业的发展受到了很多限制,因为电话销售人员在进行销售工作的时候,经常会因为各种原因触发封号机制,导致手机卡号被封,那企业电销行业要怎么降低封号率? 很多…

应届裁员,天胡开局——谈谈我的前端一年经历

应届裁员,天胡开局——谈谈我的前端一年经历 许久没有更新了,最近一个月都在忙,没错,正如题目所说,裁员然后找工作… 这周刚重新上班,工作第二天,感慨良多,记录些什么吧。 去年十…

普通测径仪升级的智能测径仪 增添11大实用功能!

普通测径仪能对各种钢材进行非接触式的外径及椭圆度在线检测,测量数据准确且无损,可测、监测、超差提示、系统分析等。在此基础上,为测径仪进行了进一步升级制成智能测径仪,为其增添更多智能化模块,让其使用更加方便。…

PHP 论文发表管理系统mysql数据库web结构layUI布局apache计算机软件工程网页wamp

一、源码特点 PHP 论文发表管理系统是一套完善的web设计系统mysql数据库 ,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 php 论文发表系统1 代码 https://download.csdn.net/download/qq_412213…

Vim + YCM + clangd

目录 1. Vim的安装 1.1 Vim安装vim-plug2. 安装YCM3. 进行语言补全配置 3.1 测试效果 1. 目的:让 Vim 像 C/C IDE 一样具备自动补全代码等功能 2. YCM:YouCompleteMe GitHub - ycm-core/YouCompleteMe: A code-completion engine for Vi…

德迅云安全为您介绍关于抗D盾的一些事

抗D盾概述: 抗D盾是新一代的智能分布式云接入系统,接入节点采用多机房集群部署模式,隐藏真实服务器IP,类似于网站CDN的节点接入,但是“抗D盾”是比CDN应用范围更广的接入方式,适合任何TCP 端类应用包括&am…

04-学成在线之系统管理服务模块之查询数据字典表中的内容,前后端联调测试

前后端联调 配置前端环境 实际开发中先由后端工程师将接口设计好并编写接口文档并交给前端工程师,前后端的工程师就开始并行开发 前端开发人员先自己mock数据即使用假数据进行开发,当后端代码完成后前端工程师尝试请求后端接口获取数据然后渲染到页面 第一步: 首…

Vue事件绑定

目录 前言 Vue事件处理 指令的语法格式 事件绑定指令—v-on 回调函数 前言 我们知道如何在原生js中实现事件绑定&#xff0c;那在vue中如何实现呢&#xff1f; Vue事件处理 指令的语法格式 <标签 v-指令名&#xff1a;参数名"表达式">{{插值语法}}</…

图识单链表

CSDN主页&#xff1a;醋溜马桶圈_C语言进阶,初始C语言,数据结构-CSDN博客 Gitee主页&#xff1a;mnxcc (mnxcc) - Gitee.com 专栏&#xff1a;数据结构_醋溜马桶圈的博客-CSDN博客 我们之前学习了顺序表的有关知识&#xff0c;顺序表存在下面的问题&#xff1a; 尾插效率还不错…

SQL-LABS

less8 and 11-- 12 发现存在注入点 接下来我们会接着用联合查询 和以往的题目不一样没显错位&#xff0c;也就是没有报错的内容&#xff0c;尝试用盲注 布尔型 length&#xff08;&#xff09;返回长度 substr&#xff08;&#xff09;截取字符串&#xff08;语法substr&a…

冷空气已发货,户外作业者请做好足部保暖

冷空气不间断 多地体验一夜入冬 据中国天气网消息 冷空气正在马不停蹄发货 三分之二国土需羽绒服护体 同时记得做好足部保暖。 在寒风凛冽的冬日中&#xff0c;对于常年在户外工作人员的群体来说&#xff0c;又到了一年里最难熬的时节。他们不畏严寒&#xff0c;在零度以下…

C#中.NET Framework4.8 Windows窗体应用通过EF访问数据库并对数据库追加、删除记录

目录 一、应用程序设计 二、应用程序源码 三、生成效果 前文作者发布了在.NET Framework4.8 控制台应用中通过EF访问已有数据库&#xff0c;事实上在.NET Framework4.8 Windows窗体应用中通过EF访问已有数据库也是一样的。操作方法基本一样&#xff0c;数据库EF模型和上下文…

TikTok与心灵成长:娱乐与启发并重

社交媒体已成为我们生活的一部分&#xff0c;其中TikTok以其短视频内容和创新性而闻名。然而&#xff0c;TikTok不仅仅是一个娱乐平台&#xff0c;它还具有潜力成为心灵成长的有力工具。本文将探讨TikTok如何在娱乐与启发之间取得平衡&#xff0c;以促进心灵成长和积极影响。 娱…

大环境之下软件测试行业趋势能否上升?

如果说&#xff0c;2021年对于全世界来说&#xff0c;都是一场极大的挑战的话&#xff1b;那么&#xff0c;2022年绝对是机遇多多的一年。众所周知&#xff0c;随着疫情在全球范围内逐步得到控制&#xff0c;无论是国际还是国内的环境&#xff0c;都会呈现逐步回升的趋势&#…

阿里云国际站:密钥管理服务

文章目录 一、密钥管理服务的概念 二、密钥管理服务的功能 三、密钥管理服务的优势 一、密钥管理服务的概念 密钥管理服务KMS&#xff08;Key Management Service&#xff09;是您的一站式密钥管理和数据加密服务平台、一站式凭据安全管理平台&#xff0c;提供简单、可靠、…

学开发语言 求职互联网行业的未来发展

我喜欢回答各种各样的问题&#xff0c;自然也喜欢记录下自己的一些观点和看法。希望给朋友们多一点参考&#xff0c;也欢迎交流探讨。 提问&#xff1a; 自考本科&#xff0c;学的开发语言&#xff0c;问互联网行业求职和发展&#xff01; 作为一个资深码农&#xff0c;对这样…

2.3.5 交换机的VRRP技术

实验2.3.5 交换机的VRRP技术 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.交换机的基本配置 六、任务验收七、任务小结 一、任务描述 某公司的网络核心层原来采用一台三层交换机&#xff0c;随着网络应用的日益增多&#xff0c;对网络的可靠性也提出了越来…