深度学习 机器视觉 人脸识别系统 - opencv python 计算机竞赛

文章目录

  • 0 前言
  • 1 机器学习-人脸识别过程
    • 人脸检测
    • 人脸对其
    • 人脸特征向量化
    • 人脸识别
  • 2 深度学习-人脸识别过程
    • 人脸检测
    • 人脸识别
        • Metric Larning
  • 3 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 机器视觉 人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if  (array(weiVec-TrainVec)**2).sum() < resVal:res =  iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

在这里插入图片描述

2 深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/192790.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

等保到底在“保”什么?

在信息时代&#xff0c;等保评级成为衡量企业信息安全水平的重要标准。那么&#xff0c;什么是等保评级呢&#xff1f;等保合规到底保的是什么呢&#xff1f;一起来看看吧。 编辑搜图 请点击输入图片描述&#xff08;最多18字&#xff09; 等保评级&#xff0c;会从七个维度进…

03-CSS基础选择器

3.1 CSS基础认知&#x1f34e; 3.1.1 &#x1f441;️‍&#x1f5e8;️CSS概念 CSS&#xff1a;层叠样式表&#xff08;Cascading style sheets)&#xff0c;为网页标签增加样式表现的 语法格式&#xff1a; 选择器{<!-- 属性设置 -->属性名:属性值; <!--每一个…

从0到0.01入门React | 004.精选 React 面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

《QT从基础到进阶·二十八》QProcess使用,从一个exe程序启动另一个exe程序

QString exePath QCoreApplication::applicationDirPath(); //获取要启动的另一个exe路径 exePath exePath “/OffLineProcess.exe”; //路径exe名称 QProcess* Process new QProcess; //创建新的进程 Process->start(exePath)…

Dart利用私有构造函数_()创建单例模式

文章目录 类的构造函数_()函数dart中构造函数定义 类的构造函数 类的构造函数有两种&#xff1a; 1&#xff09;默认构造函数&#xff1a; 当实例化对象的时候&#xff0c;会自动调用的函数&#xff0c;构造函数的名称和类的名称相同&#xff0c;在一个类中默认构造函数只能由…

Copliot:让你一秒变身网页达人的神奇助手

Copliot&#xff1a;一款能够帮助你快速理解网页内容的智能助手 你是否有过这样的经历&#xff0c;当你浏览网页时&#xff0c;遇到了一些你不太了解的内容&#xff0c;比如一些专业术语&#xff0c;一些复杂的概念&#xff0c;或者一些有趣的话题&#xff1f;你是否想要快速地…

代码随想录 Day44 动规12 LeetCode T300 最长递增子序列 T674 最长连续递增序列 T718 最长重复子数组

前言 本期我们来解决动规的经典题型------ 子数组问题 我们还是会使用动规五部曲来解决问题,下面我们仍然列出动规五部曲 1.明确dp数组含义 2.明确dp数组如何推导-递推公式 3.初始化dp数组 4.确定遍历顺序 5.打印dp数组排错 LeetCode T300 最长递增子序列 题目链接:300. 最长…

git分支管理以及不同git工作流对比

0、 单人开发场景 单人开发可能会出现的场景之一 如果多人协同开发我们则需要使用更加专业的工具Git&#xff08;分布式版本控制&#xff09; 1、多人协同工作使用git会出现什么问题? 代码冲突&#xff1a; 问题&#xff1a; 当多个开发者同时修改同一文件或同一行代码时…

SQL编写规范【干货】

编写本文档的目的是保证在开发过程中产出高效、格式统一、易阅读、易维护的SQL代码。 1 编写目 2 SQL书写规范 3 SQL编写原则 获取所有软件开发资料&#xff1a;点我获取

TikTok女性创作者:媒体世界的新领袖

在数字时代&#xff0c;社交媒体已成为媒体和娱乐产业的关键组成部分&#xff0c;而TikTok作为最受欢迎的短视频分享平台之一&#xff0c;为女性创作者提供了一个独特的机会来在媒体世界中崭露头角。 这个平台不仅为女性创作者提供了一个创作和分享自己的声音、观点和创意的空…

Vue3中使用provide和inject依赖注入完成父组件和孙子组件之间参数传递

Vue3中使用provide和inject依赖注入完成父组件和孙子组件之间参数传递 官网介绍 注意以下写法都是使用setup 代码结构 依赖注入-父组件 import { ref, provide } from "vue"const outDialogCardInfo ref() function updateOutDialogCardInfo(item) {console.log…

初认识vue,v-for,v-if,v-bind,v-model,v-html等指令

vue 一.vue3介绍 1.为什么data是函数而不是对象? 因为vue是组件开发,组件会多次复用,data如果是对象,多次复用是共享,必须函数返回一个新的对象 1. 官网初识 Vue (发音为 /vjuː/&#xff0c;类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS …

【中间件篇-Redis缓存数据库07】Redis缓存使用问题及互联网运用

Redis缓存使用问题 数据一致性 只要使用到缓存&#xff0c;无论是本地内存做缓存还是使用 redis 做缓存&#xff0c;那么就会存在数据同步的问题。 我以 Tomcat 向 MySQL 中写入和删改数据为例&#xff0c;来给你解释一下&#xff0c;数据的增删改操作具体是如何进行的。 我…

C# DirectoryInfo类的用法

在C#中&#xff0c;DirectoryInfo类是System.IO命名空间中的一个类&#xff0c;用于操作文件夹&#xff08;目录&#xff09;。通过DirectoryInfo类&#xff0c;我们可以方便地创建、删除、移动和枚举文件夹。本文将详细介绍DirectoryInfo类的常用方法和属性&#xff0c;并提供…

在搭建企业知识库时,这三个重要方面可不能忽略

随着信息时代的到来&#xff0c;企业面临着海量的信息和知识的挑战。为了更好地组织、管理和利用企业内部的知识资源&#xff0c;越来越多的企业开始搭建自己的知识库系统。 企业知识库是一个集中存储和管理知识、经验和信息的平台&#xff0c;它不仅可以提高企业的协作效率&a…

登上CMMLU性能评测榜单第一 四大维度解码夸克自研大模型

11月14日&#xff0c;拥有千亿参数的夸克自研大模型正式发布&#xff0c;立刻占据CMMLU榜单第一名。夸克大模型将应用于通用搜索、医疗健康、教育学习、职场办公等多个场景。性能方面&#xff0c;其整体水平已经超过GPT-3.5&#xff0c;其中在写作、考试等部分场景中可以超过GP…

C#多线程的操作

文章目录 1 使用线程意义2 C#线程开启的四种方式2.1 异步委托开启线程2.2 通过Thread类开启线程2.3 通过线程池开启线程2.4 通过任务Task开启线程 3 前台线程和后台线程简述3.1 前台线程3.2 后台线程 4 简述Thread和Task开启线程的区别4.1 Thread效果展示4.2 Task效果展示4.3 区…

ssm823基于ssm的心理预约咨询管理系统的设计与实现+vue

ssm823基于ssm的心理预约咨询管理系统的设计与实现vue 交流学习&#xff1a; 更多项目&#xff1a; 全网最全的Java成品项目列表 https://docs.qq.com/doc/DUXdsVlhIdVlsemdX 演示 项目功能演示&#xff1a; ————————————————

一本了解生成式人工智能

上周&#xff0c;发了一篇关于大语言模型图数据库技术相结合的文章&#xff0c;引起了很多朋友的兴趣。当然了&#xff0c;这项技术本身就让俺们很兴奋&#xff0c;比如我就是从事图研发的&#xff0c;当然会非常关注它在图领域的应用与相互促就啦。 纵观人类文明历史&#xff…

Postman+Newman+Jenkins实现接口测试持续集成

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 1.新建一个项目 2.设置自定义工作空间 3.执行windows的批处理命令 4.执行系统的Groovy脚本 5.生成的HTML的报告集成到Jenkin…