算法学习打卡day45|动态规划:股票问题总结

Leetcode股票问题总结篇

在这里插入图片描述

  • 动态规划的股票问题一共六道题,买卖股票最佳时机和买卖股票手续费都是一个类型的问题,维护好买入和卖出两个状态即可,方法一摸一样。而冷冻期也差不多就是状态多了点,买入、保持卖出、当日卖出、以及冷冻期四个状态。
  • 做题方法还是动态规划五部曲:
    • 明确dp数组含义,这里六道题全部第i天都是手里买入状态或者卖出状态的现金数是多少,这篇文章下标0代表未持有,下标1代表持有。
    • 写出递推公式,下面写了最基本的,其他题的公式都是在这个基础上做了修改的:
      	dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);dp[i][1] = max(dp[i - 1][1], -prices[i]);
      
      • 最佳时机2那道题就是在这个基础上,修改买入时的递推公式为dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]-prices[i - 1]);
      • 最佳时机3那道题是增加两个状态表示第二次买入和卖出:
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        
      • 最佳时机4那道题是增加到2 * k个状态,那么内层就要变为双层循环为各个状态赋值了。
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] + prices[i]);
        
      • 冻结期那道题的递推公式就稍微复杂了,需要维护四个状态,分别是买入、保持卖出、当日卖出、以及冷冻期。
        	dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];
        
      • 含手续费这道题和第二道题一摸一样,在卖出时减去手续费就行。
    • 初始化:每次买入的时候必须初始化为-price[0],其他赋值为0即可。
    • 遍历顺序:由于需要用到 i - 1的资金,所以从前往后遍历

121. 买卖股票的最佳时机

力扣题目链接

代码实现:

int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size() + 1, vector(2, 0));dp[1][0] = 0, dp[1][1] = -prices[0];//二维数组0代表不持有,1代表持有for (int i = 2; i <= prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i - 1]);dp[i][1] = max(dp[i - 1][1], -prices[i - 1]);}return dp[prices.size()][0];}
  • 动态规划二维数组滚动数组优化方式:
int maxProfit(vector<int>& prices) {vector<vector<int>> dp(2, vector(2, 0));//只记录当前天和前一天的状态即可dp[0][0] = 0, dp[0][1] = -prices[0];//二维数组0代表不持有,1代表持有for (int i = 1; i < prices.size(); ++i) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] + prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], -prices[i]);//看实现通过求余,每次取的都是前一个元素值}return dp[(prices.size() + 1) % 2][0];//用+1,因为数组可能为空}
  • 动态规划一维数组实现法,比二维实现更简洁
int maxProfit(vector<int>& prices) {vector<int> dp(2, 0);//只记录当前天的状态即可dp[0] = 0, dp[1] = -prices[0];//0代表不持有,1代表持有for (int i = 1; i < prices.size(); ++i) {dp[0] = max(dp[0], dp[1] + prices[i]);dp[1] = max(dp[1], -prices[i]);}return dp[0];}
  • 贪心法实现(每次更新左边界为最小值,然后不断更新result结果):
int maxProfit(vector<int>& prices) {int low = INT_MAX, result = 0;for (int i = 0; i < prices.size(); ++i) {low = min(low, prices[i]);result = max(result, prices[i] - low);}return result;}

买卖股票的最佳时机2

力扣题目链接
思路:

  • 在上题基础上增加了买卖次数,修改买入时的计算方法即可。

代码实现

  • 普通动态规划想法,直接计算每天的利润(和贪心类似)
int maxProfit(vector<int>& prices) {//dp[i] = max(dp[i - 1], dp[i - 1] + prices[i] - prices[i - 1]);vector<int> dp(prices.size(), 0);for (int i = 1; i < prices.size(); ++i) {dp[i] = max(dp[i - 1], dp[i - 1] + prices[i] - prices[i - 1]);}   return dp[prices.size() - 1];}
  • 用双状态实现的方法(这里用一维数组实现的,也可以是二维)
int maxProfit(vector<int>& prices) {vector<int> dp(2, 0);dp[0] = 0, dp[1] = -prices[0];for (int i = 1; i < prices.size(); ++i) {dp[0] = max(dp[0], dp[1] + prices[i]);dp[1] = max(dp[1], dp[0] - prices[i]);}return dp[0];}
  • 贪心法
int maxProfit(vector<int>& prices) {int profit = 0;for (int i = 1; i < prices.size(); i++) {profit += max(prices[i] - prices[i - 1], 0);}return profit;}
  • 双指针法
int maxProfit(vector<int>& prices) {int profit = 0, buy_index = 0;for (int i = 0; i < prices.size() - 1; i++) {if (prices[i] > prices[i + 1]) {profit += prices[i] - prices[buy_index];buy_index = i + 1;continue;}if (i + 1 == prices.size() - 1) {profit += prices[i + 1] - prices[buy_index];}}return profit;}

买卖股票的最佳时机3

力扣题目链接
思路:

  • 这道题规定只能买卖两次,实现方法上面已经写过了,直接上代码

代码实现

int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0], dp[0][3] = -prices[0];//相当于当天买卖一次后再次买入for (int i = 1; i < prices.size(); ++i) {dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}

买卖股票的最佳时机4

力扣题目链接

思路:
买卖次数规定为k次,需要利用循环给每次买卖赋值。

代码实现

int maxProfit(int k, vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(k * 2 + 1, 0));for (int i = 1; i < 2 * k + 1; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); ++i) {for (int j = 1; j <= 2 * k - 1; j += 2) {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] + prices[i]);}}return dp[prices.size() - 1][2 * k];}

买卖股票的最佳时机含冷冻期

力扣题目链接
题目描述:
在第二题基础上,增加了冷冻期,需要维护四个状态

代码实现

int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(4, 0));dp[0][0] = -prices[0];for (int i = 1; i < len; ++i) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));}

买卖股票的最佳时机含手续费

力扣题目链接
题目描述:
和第二题基本一样,卖出时减去手续费就行了

代码实现

int maxProfit(vector<int>& prices, int fee) {vector<vector<int>> dp(prices.size(), vector<int>(2, 0));dp[0][1] = -prices[0];for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);}return dp[prices.size() - 1][0];}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193482.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android10 手势导航

种类 Android10 默认的系统导航有三种&#xff1a; 1.两个按钮的 2.三个按钮的 3.手势 它们分别对应三个包名 frameworks/base/packages/overlays/NavigationBarMode2ButtonOverlay frameworks/base/packages/overlays/NavigationBarMode3ButtonOverlay frameworks/base/packa…

基于安卓android微信小程序的快递取件及上门服务系统

项目介绍 本文从管理员、用户的功能要求出发&#xff0c;快递取件及上门服务中的功能模块主要是实现管理员服务端&#xff1b;首页、个人中心、用户管理、快递下单管理、预约管理、管理员管理、系统管理、订单管理&#xff0c;用户客户端&#xff1b;首页、快递下单、预约管理…

笔记51:循环神经网络入门

本地笔记地址&#xff1a;D:\work_file\DeepLearning_Learning\03_个人笔记\3.循环神经网络\循环神经网络 a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

VS2017新建.hpp文件

目录 1、新建h文件的方法&#xff1a;2、新建对用的cpp文件&#xff1a;3、在main.cpp中调用 1、新建h文件的方法&#xff1a; 2、新建对用的cpp文件&#xff1a; 3、在main.cpp中调用 参见大佬博客

【flink实战】动态表:关系查询处理流的思路:连续查询、状态维护;表转换为流需要编码编码

文章目录 一. 使用关系查询处理流的讨论二. 动态表 & 连续查询(Continuous Query)三. 在流上定义表1. 连续查询2. 查询限制2.1. 维护状态2.2. 计算更新 四. 表到流的转换1. Append-only 流2. Retract 流3. Upsert 流 本文主要讨论了&#xff1a; 讨论通过关系查询处理无界流…

天津专升本新版报名系统网上报名、填志愿、缴费、审核等操作步骤

天津高职升本网上报名、填报志愿新版专升本报名系统 ▏报名入口&#xff1a;www.zhaokao.net▏注意&#xff1a;一定要在截止时间内完成报名、填报志愿、缴费、审核、下载《报名信息表》等4步骤▏可报考院校及专业请参考招生院校发布的通知&#xff08;招生简章、报考须知&…

YOLOv7独家原创改进:最新原创WIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能精度

💡该教程为属于《芒果书》📚系列,包含大量的原创首发改进方式, 所有文章都是全网首发原创改进内容🚀 💡本篇文章为YOLOv7独家原创改进:独家首发最新原创WIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能精度。 💡对自己数据集改进有效…

EMNLP 2023 | 用于开放域多跳推理的大语言模型的自我提示思想链

©PaperWeekly 原创 作者 | 王金元 单位 | 上海交通大学 研究方向 | 大模型微调及应用 论文标题&#xff1a; Self-prompted Chain-of-Thought on Large Language Models for Open-domain Multi-hop Reasoning 模型&代码地址&#xff1a; https://github.com/noewangj…

Android 框架

MVC: MVP MVVM Model 数据以及业务数据 View 视图 Control 控制器 simple code MVP OnFinishInflate ViewGroup 加载完成 MVC 优化 Struts MVC- MVP MVC-单次调用逻辑把 MVP / 把C拆分出来 MVVM 2017Google推出ViewModel DataBind MVVM是一种框架规则,双向绑定 Model…

LeetCode(16)接雨水【数组/字符串】【困难】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 42. 接雨水 1.题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&…

技巧篇:Mac 环境PyCharm 配置 python Anaconda

Mac 中 PyCharm 配置 python Anaconda环境 在 python 开发中我们最常用的IDE就是PyCharm&#xff0c;有关PyCharm的优点这里就不在赘述。在项目开发中我们经常用到许多第三方库&#xff0c;用的最多的命令就是pip install 第三方库名 进行安装。现在你可以使用一个工具来帮你解…

仿京东拼多多商品分类页-(RecyclerView悬浮头部实现、xml绘制ItemDecoration)

文章目录 前言效果图思路方式一&#xff1a;通过xml布局来实现方式二&#xff1a;通过ItemDecoration方式来实现 实现步骤1、数据项格式2、左侧列表适配器3、右侧列表适配器4、头部及悬浮头部绘制4.1头部偏移高度为要绘制xml布局的高度--getItemOffsets()4.2 绘制固定头部--onD…

Leetcode刷题详解——岛屿数量

1. 题目链接&#xff1a;200. 岛屿数量 2. 题目描述&#xff1a; 给你一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的的二维网格&#xff0c;请你计算网格中岛屿的数量。 岛屿总是被水包围&#xff0c;并且每座岛屿只能由水平方向和/或竖直方向上…

RabbitMQ之延迟队列(万字总结,手把手教你学习延迟队列)

文章目录 一、延迟队列概念二、延迟队列使用场景三、RabbitMQ 中的 TTL1、队列设置 TTL2、消息设置 TTL3、两者的区别 四、整合 springboot1、添加依赖2、修改配置文件3、添加 Swagger 配置类 五、队列 TTL1、代码架构图2、配置文件类代码3、消息生产者代码4、消息消费者代码 六…

Java GUI小程序之图片浏览器

以下是一个简单的图片浏览器示例代码&#xff0c;它包含了图片放大缩小、拖拽、上一张/下一张查看等功能。你可以根据它进行扩展&#xff0c;提高用户体验。 import java.awt.BorderLayout; import java.awt.Dimension; import java.awt.event.ActionEvent; import java.awt.e…

Linux系统编程——进程中vfork函数

函数原型 pid_t vfork(void);//pid_t是无符号整型 所需头文件 #include <sys/types.h> #include <unistd.h> 功能 vfork() 函数和 fork() 函数一样都是在已有的进程中创建一个新的进程&#xff0c;但它们创建的子进程是有区别的。 返回值 成功子进程中返回 …

如何使用内网穿透实现远程公网访问windows node.js的服务端

使用Nodejs搭建简单的web网页并实现公网访问 前言 Node.js是建立在谷歌Chrome的JavaScript引擎(V8引擎)的Web应用程序框架。 Node.js自带运行时环境可在Javascript脚本的基础上可以解释和执行(这类似于JVM的Java字节码)。这个运行时允许在浏览器以外的任何机器上执行JavaScri…

Zookeeper 命令使用和数据说明

文章目录 一、概述二、命令使用2.1 登录 ZooKeeper2.2 ls 命令&#xff0c;查看目录树&#xff08;节点&#xff09;2.3 create 命令&#xff0c;创建节点2.4 delete 命令&#xff0c;删除节点2.5 set 命令&#xff0c;设置节点数据2.6 get 命令&#xff0c;获取节点数据 三、数…

在 Electron上安装better-sqlite3出错

错误问题 一直卡npm install --global windows-build-tools --vs2015 这一步 解决 安装&#xff1a;pnpm install better-sqlite3 --save安装命令 pnpm i -D electron-rebuild 手动运行&#xff1a;node_modules/.bin/electron-rebuild -f -w better-sqlite3 我直接在packa…

一文了解VR全景拍摄设备如何选择,全景图片如何处理

引言&#xff1a; 在如今的数字化时代&#xff0c;虚拟现实&#xff08;VR&#xff09;技术不仅为我们的生活增添了许多乐趣&#xff0c;也为摄影领域带来了新的摄影方式&#xff0c;那么VR全景拍摄如何选择设备&#xff0c;全景图片又怎样处理呢&#xff1f; 一. VR全景拍摄设…