2023年亚太杯数学建模思路 - 案例:ID3-决策树分类算法

文章目录

  • 0 赛题思路
    • 1 算法介绍
    • 2 FP树表示法
    • 3 构建FP树
    • 4 实现代码
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 算法介绍

FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。

FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

2 FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:
  在这里插入图片描述
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
  在这里插入图片描述

3 构建FP树

现在有如下数据:

在这里插入图片描述

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
在这里插入图片描述

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

4 实现代码

def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print('   ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children:  # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count)  # incrament countelse:  # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None:  # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1:  # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode):  # this version does not use recursionwhile (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/194425.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Backblaze 2023 Q3硬盘故障质量报告解读

作为一家在2021年在美国纳斯达克上市的云端备份公司&#xff0c;Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告&#xff0c;给大家提供了一份真实应用场景下的稳定性分析参考数据。2023年度之前发布的两次报告&#xff0c;请参考&#xff1a; Backblaze发布2…

qnx 工程目录创建工具 addvariant

文章目录 前言一、addvariant 是什么二、addvariant 使用实例1. variant names 参数说明2. 创建一个可执行文件工程3. 创建一个动态库工程 总结参考资料 前言 本文主要介绍如何在qnx 开发环境中创建工程目录及其相关的配置文件(common.mk, Makefile 文件等) 软件版本&#xff…

Java毕业设计心得体会

1. 开始准备选题、开题报告 大四上学期开学时开始准备论文的&#xff0c;首先是确定论文主题&#xff0c;看自己想做什么毕业设计&#xff0c;可以选取之前接触过的&#xff0c;做过的东西&#xff0c;这样快一些&#xff0c;我之前一直是学Java的&#xff0c;就打算直接用Jav…

如何将本地Portainer管理界面结合cpolar内网穿透工具实现远程浏览器访问

文章目录 前言1. 部署Portainer2. 本地访问Portainer3. Linux 安装cpolar4. 配置Portainer 公网访问地址5. 公网远程访问Portainer6. 固定Portainer公网地址 前言 Portainer 是一个轻量级的容器管理工具&#xff0c;可以通过 Web 界面对 Docker 容器进行管理和监控。它提供了可…

操作系统(二 )| 进程控制 进程状态 进程描述 进程控制 进程同步互斥

文章目录 1 进程和程序区别2 进程状态2.1 进程的5种基本状态2.2 进程状态之间转换2.3 七状态模型 3 进程描述3.1 进程控制块 PCB3.2 进程块组织方式 4 进程控制5 进程同步 互斥5.1 区分进程互斥和同步5.2 核心方案5.3 其他方案方案1 设置锁变量方案2 严格轮转法方案3 Peterson解…

rabbitmq 集群搭建

RabbitMQ集群介绍 RabbitMQ集群是一组RabbitMQ节点&#xff08;broker&#xff09;的集合&#xff0c;它们一起工作以提供高可用性和可伸缩性服务。 RabbitMQ集群中的节点可以在同一物理服务器或不同的物理服务器上运行。 RabbitMQ集群的工作原理是&#xff0c;每个节点在一个…

【机器学习】K近邻算法:原理、实例应用(红酒分类预测)

案例简介&#xff1a;有178个红酒样本&#xff0c;每一款红酒含有13项特征参数&#xff0c;如镁、脯氨酸含量&#xff0c;红酒根据这些特征参数被分成3类。要求是任意输入一组红酒的特征参数&#xff0c;模型需预测出该红酒属于哪一类。 1. K近邻算法介绍 1.1 算法原理 原理&a…

Spring cloud负载均衡@LoadBalanced LoadBalancerClient

LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon&#xff0c;直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件&#xff0c;我们讨论Spring负载均衡以Spring Cloud2020之后版本为主&#xff0c;学习Spring Cloud LoadBalance&#xff0c;暂不讨论Ribbon…

【JAVA学习笔记】70 - 反射

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter23/src 反射 一、反射的引出 package com.yinhai.reflection.question;import com.yinhai.Cat;import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IO…

Sonar生成PDF错误Can‘t get Compute Engine task status.Retry..... HTTP error: 401

报错及修改&#xff1a; 报错&#xff1a;INFO: Can’t get Compute Engine task status.Retry… org.sonarqube.ws.connectors.ConnectionException: HTTP error: 401, msg: , query: org.apache.commons.httpclient.methods.GetMethod7a021f49 ERROR: Problem generating PD…

JavaScript的函数的形参与实参是怎么回事

0 写在前面 此文给小白看的&#xff0c;如果不是可以直接关闭 1 讲解 例如JavaScript中定义函数 //定义函数 function 方法名(形参){方法体-->使用形参}//使用函数 方法名字(实参)具体干了什么呢&#xff1f;此处以伪代码举例 //定义函数 function eat(A,B){A 去 B 家吃…

rsync远程同步(rsync+inotify)

目录 一、概述 1、关于rsync 2、rsync的特点&#xff1a; 3、备份方式&#xff1a; 4、同步方式&#xff1a; 二、rsync相关命令 1、rsync常用命令的选项&#xff1a; 2、启动和关闭rsync服务&#xff1a; 3、关闭 rsync 服务 三、 免交互&#xff1a; 1、免密同步&a…

趣学python编程 (一、计算机基础知识科普)

未来是高度科技化和智能化的时代。过去不识字的叫“文盲”&#xff0c;如今不懂点计算机知识&#xff0c;则可能是新时代的“文盲”。不论从事什么行业&#xff0c;了解下计算机和编程都是有益的。Python 连续多年占据最受欢迎的编程语言榜首&#xff0c;未来Python有机会成为像…

在qt的设计师界面没有QVTKOpenGLWidget这个类,只有QOpenGLWidget,那么我们如何得到QVTKOpenGLWidget呢?

文章目录 前言不过,时过境迁,QVTKOpenGLWidget用的越来越少,官方推荐使用qvtkopengnativewidget代替QVTKOpenGLWidget 前言 在qt的设计师界面没有QVTKOpenGLWidget这个类,只有QOpenGLWidget,我们要使用QVTKOpenGLWidget,那么我们如何得到QVTKOpenGLWidget呢? 不过,时过境迁,Q…

08【保姆级】-GO语言的函数、包、错误处理

08【保姆级】-GO语言的函数、包、错误处理 一、 函数基本介绍1.1 基本概念1.2 包的概念1.3 包使用的注意事项和细节1.4 函数的调用机制1.5 函数的递归调用1.6 函数使用的注意事项和细节讨论1.7 init函数1.8 匿名函数1.8.1 匿名函数使用方式1.8.2 全局匿名函数 1.9 闭包1.9.1 闭…

【Java 进阶篇】JQuery 遍历 —— For 循环的奇妙之旅

在前端开发的世界里&#xff0c;遍历是一个常见而重要的操作。它让我们能够浏览并操纵文档中的元素&#xff0c;为用户提供更加丰富和交互性的体验。而在 JQuery 中&#xff0c;遍历的方式多种多样&#xff0c;其中 for 循环是一种简单而灵活的选择。在本篇博客中&#xff0c;我…

Mac电脑VSCode配置PHP开发环境

1.安装 PHP 首先&#xff0c;打开终端&#xff0c;安装 Homebrew&#xff0c;输入如下命令&#xff1a; $ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 安装了 Homebrew 之后&#xff0c;你可以使用下面的…

这款开源神器,让聚类算法从此变得简单易用

Scikit-Learn 以其提供的多个经过验证的聚类算法而著称。尽管如此&#xff0c;其中大多数都是参数化的&#xff0c;并需要设置集群的数量&#xff0c;这是聚类中最大的挑战之一。 通常&#xff0c;使用迭代方法来决定数据的最佳聚类数量&#xff0c;这意味着你需要多次进行聚类…

【华为OD题库-015】报文重排序-Java

题目 对报文进行重传和重排序是常用的可靠性机制&#xff0c;重传缓冲区内有一定数量的子报文&#xff0c;每个子报文在原始报文中的顺序已知&#xff0c;现在需要恢复出原始报文。 输入描述 输入第一行为N,表示子报文的个数&#xff0c;0<N < 1000。 输入第二行为N个子报…

Unity 2021 LTS / Unity 2022 LTS New Shader Graph Node 参考样本

Shader Graph团队很高兴地宣布发布新的节点参考样本&#xff0c;现在可用于2021 LTS, 2022 LTS和未来的版本。 节点参考样本是超过140个Shader图形资源的集合。您可以将这些图用作参考&#xff0c;以了解每个节点的作用及其工作原理&#xff0c;而不是在项目中使用这些图。每个…