使用GPT-4训练数据微调GPT-3.5 RAG管道

原文:使用GPT-4训练数据微调GPT-3.5 RAG管道 - 知乎

OpenAI在2023年8月22日宣布,现在可以对GPT-3.5 Turbo进行微调了。也就是说,我们可以自定义自己的模型了。然后LlamaIndex就发布了0.8.7版本,集成了微调OpenAI gpt-3.5 turbo的功能

也就是说,我们现在可以使用GPT-4生成训练数据,然后用更便宜的API(gpt-3.5 turbo)来进行微调,从而获得更准确的模型,并且更便宜。所以在本文中,我们将使用NVIDIA的2022年SEC 10-K文件来仔细研究LlamaIndex中的这个新功能。并且将比较gpt-3.5 turbo和其他模型的性能。

RAG vs 微调

微调到底是什么?它和RAG有什么不同?什么时候应该使用RAG和微调?以下两张总结图:

这两个图像总结了它们基本的差别,为我们选择正确的工具提供了很好的指导。

但是,RAG和微调并不相互排斥。将两者以混合方式应用到同一个应用程序中是完全可行的。

RAG/微调混合方法

LlamaIndex提供了在RAG管道中微调OpenAI gpt-3.5 turbo的详细指南。从较高的层次来看,微调可以实现下图中描述的关键任务:

  1. 使用DatasetGenerator实现评估数据集和训练数据集的数据生成自动化。
  2. 在微调之前,使用第1步生成的Eval数据集对基本模型gpt-3.5-turbo进行Eval。
  3. 构建向量索引查询引擎,调用gpt-4根据训练数据集生成新的训练数据。
  4. 回调处理程序OpenAIFineTuningHandler收集发送到gpt-4的所有消息及其响应,并将这些消息保存为.jsonl (jsonline)格式,OpenAI API端点可以使用该格式进行微调。
  5. OpenAIFinetuneEngine是通过传入gpt-3.5-turbo和第4步生成的json文件来构造的,它向OpenAI发送一个微调调用,向OpenAI发起一个微调作业请求。
  6. OpenAI根据您的要求创建微调的gpt-3.5-turbo模型。
  7. 通过使用从第1步生成的Eval数据集来对模型进行微调。

简单的总结来说就是,这种集成使gpt-3.5 turbo能够对gpt-4训练的数据进行微调,并输出更好的响应。

步骤2和7是可选的,因为它们仅仅是评估基本模型与微调模型的性能。

我们下面将演示这个过程,在演示时,使用NVIDIA 2022年的SEC 10-K文件。

主要功能点

1、OpenAIFineTuningHandler

这是OpenAI微调的回调处理程序,用于收集发送到gpt-4的所有训练数据,以及它们的响应。将这些消息保存为.jsonl (jsonline)格式,OpenAI的API端点可以使用该格式进行微调。

2、OpenAIFinetuneEngine

微调集成的核心是OpenAIFinetuneEngine,它负责启动微调作业并获得一个微调模型,可以直接将其插件到LlamaIndex工作流程的其余部分。

使用OpenAIFinetuneEngine, LlamaIndex抽象了OpenAI api进行微调的所有实现细节。包括:

  • 准备微调数据并将其转换为json格式。
  • 使用OpenAI的文件上传微调数据。创建端点并从响应中获取文件id。
  • 通过调用OpenAI的FineTuningJob创建一个新的微调作业。创建端点。
  • 等待创建新的微调模型,然后使用新的微调模型。
    我们可以使用OpenAIFinetuneEngine的gpt-4和OpenAIFineTuningHandler来收集我们想要训练的数据,也就是说我们使用gpt-4的输出来训练我们的自定义的gpt-3.5 turbo模型

from llama_index import ServiceContext 
from llama_index.llms import OpenAI 
from llama_index.callbacks import OpenAIFineTuningHandler 
from llama_index.callbacks import CallbackManager # use GPT-4 and the OpenAIFineTuningHandler to collect data that we want to train on. 
finetuning_handler = OpenAIFineTuningHandler() 
callback_manager = CallbackManager([finetuning_handler]) gpt_4_context = ServiceContext.from_defaults( llm=OpenAI(model="gpt-4", temperature=0.3), context_window=2048,  # limit the context window artifically to test refine process callback_manager=callback_manager, 
) # load the training questions, auto generated by DatasetGenerator 
questions = [] 
with open("train_questions.txt", "r") as f: for line in f: questions.append(line.strip()) from llama_index import VectorStoreIndex # create index, query engine, and run query for all questions 
index = VectorStoreIndex.from_documents(documents, service_context=gpt_4_context) 
query_engine = index.as_query_engine(similarity_top_k=2) for question in questions: response = query_engine.query(question) # save fine-tuning events to jsonl file 
finetuning_handler.save_finetuning_events("finetuning_events.jsonl") from llama_index.finetuning import OpenAIFinetuneEngine # construct OpenAIFinetuneEngine  
finetune_engine = OpenAIFinetuneEngine( "gpt-3.5-turbo", "finetuning_events.jsonl" 
) # call finetune, which calls OpenAI API to fine-tune gpt-3.5-turbo based on training data in jsonl file. 
finetune_engine.finetune() # check current job status 
finetune_engine.get_current_job() # get fine-tuned model 
ft_llm = finetune_engine.get_finetuned_model(temperature=0.3)

需要注意的是,微调函数需要时间,对于我测试的169页PDF文档,从在finetune_engine上启动finetune到收到OpenAI的电子邮件通知我新的微调工作已经完成,这段时间大约花了10分钟。下面的电子邮件如下。


在收到该电子邮件之前,如果在finetune_engine上运行get_finetuned_model,会得到一个错误,提示微调作业还没有准备好。
3、ragas框架
ragas是RAG Assessment的缩写,它提供了基于最新研究的工具,使我们能够深入了解RAG管道。
ragas根据不同的维度来衡量管道的表现:忠实度、答案相关性、上下文相关性、上下文召回等。对于这个演示应用程序,我们将专注于衡量忠实度和答案相关性。
忠实度:衡量给定上下文下生成的答案的信息一致性。如果答案中有任何不能从上下文推断出来的主张,则会被扣分。
答案相关性:指回答直接针对给定问题或上下文的程度。这并不考虑答案的真实性,而是惩罚给出问题的冗余信息或不完整答案。
在RAG管道中应用ragas的详细步骤如下:

  • 收集一组eval问题(最少20个,在我们的例子中是40个)来形成我们的测试数据集。
  • 在微调之前和之后使用测试数据集运行管道。每次使用上下文和生成的输出记录提示。
  • 对它们中的每一个运行ragas评估以生成评估分数。
比较分数就可以知道微调对性能的影响有多大。
代码如下:
contexts = [] 
answers = [] # loop through the questions, run query for each question 
for question in questions: response = query_engine.query(question) contexts.append([x.node.get_content() for x in response.source_nodes]) answers.append(str(response)) from datasets import Dataset 
from ragas import evaluate 
from ragas.metrics import answer_relevancy, faithfulness ds = Dataset.from_dict( { "question": questions, "answer": answers, "contexts": contexts, } 
) # call ragas evaluate by passing in dataset, and eval categories 
result = evaluate(ds, [answer_relevancy, faithfulness]) 
print(result) import pandas as pd # print result in pandas dataframe so we can examine the question, answer, context, and ragas metrics 
pd.set_option('display.max_colwidth', 200) 
result.to_pandas()

评估结果 最后我们可以比较一下微调前后的eval结果。 基本gpt-3.5-turbo的评估请看下面的截图。answer_relevance的评分不错,但忠实度有点低。


经过微调,模型的性能在答案相关性中略有提高,从0.7475提高到0.7846,提高了4.96%。


使用gpt-4生成训练数据对gpt-3.5 turbo进行微调确实看到了改善。
一些有趣的发现
1、对小文档进行微调会导致性能下降
最初用一个小的10页PDF文件进行了实验,我发现eval结果与基本模型相比性能有所下降。然后又继续测试了两轮,结果如下:
第一轮基本模型:Ragas_score: 0.9122, answer_relevance: 0.9601, faithfulness: 0.8688
第一轮微调模型:Ragas_score: 0.8611, answer_relevance: 0.9380, faithfulness: 0.7958
第二轮基本模型:Ragas_score: 0.9170, answer_relevance: 0.9614, faithfulness: 0.8765
第二轮微调模型:Ragas_score: 0.8891, answer_relevance: 0.9557, faithfulness: 0.8313
所以换衣小文件可能是微调模型比基本模型表现更差的原因。所以使用了NVIDIA长达169页的SEC 10-K文件。对上面的结果做了一个很好的实验——经过微调的模型表现得更好,忠实度增加了4.96%。
2、微调模型的结果不一致
原因可能是数据的大小和评估问题的质量
尽管169页文档的微调模型获得了预期的评估结果,但我对相同的评估问题和相同的文档运行了第二轮测试,结果如下:
第二轮基本模型:Ragas_score: 0.8874, answer_relevance: 0.9623, faithfulness: 0.8233
第二轮微调模型:Ragas_score: 0.8218, answer_relevance: 0.9498, faithfulness: 0.7242
是什么导致了eval结果的不一致?
数据大小很可能是导致不一致的微调计算结果的根本原因之一。“至少需要1000个微调数据集的样本。”这个演示应用显然没有那么多的微调数据集。
另一个根本原因很可能在于数据质量,也就是eval问题的质量。我将eval结果打印到一个df中,列出了每个问题的问题、答案、上下文、answer_relevance和忠实度。
通过目测,有四个问题在忠实度中得分为0。而这些答案在文件中没有提供上下文。这四个问题质量很差,所以我从eval_questions.txt中删除了它们,重新运行了评估,得到了更好的结果:
基本模型eval:Ragas_score: 0.8947, answer_relevance: 0.9627, faithfulness: 0.8356


微调模型eval:Ragas_score: 0.9207, answer_relevance: 0.9596, faithfulness: 0.8847


可以看到在解决了这四个质量差的问题后,微调版的上升了5.9%。所以评估问题和训练数据需要更多的调整,以确保良好的数据质量。这确实是一个非常有趣的探索领域。
3、微调的成本
经过微调的gpt-3.5-turbo的价格高于基本模型的。我们来看看基本模型、微调模型和gpt-4之间的成本差异:


比较gpt-3.5-turbo (4K环境)、微调gpt-3.5-turbo和gpt-4 (8K环境),可以看到:

  • 经过微调的gpt-3.5 turbo在输入和输出使用方面的成本是基本模型的8倍。
  • 对于输入使用,Gpt-4的成本是微调模型的2.5倍,对于输出使用则是3.75倍。
  • 对于输入使用,Gpt-4的成本是基本模型的20倍,对于输出使用情况是30倍。
  • 另外使用微调模型会产生$0.008/1K 令牌的额外成本。

总结

本文探索了LlamaIndex对OpenAI gpt-3.5 turbo微调的新集成。我们通过NVIDIA SEC 10-K归档分析的RAG管道,测试基本模型性能,然后使用gpt-4收集训练数据,创建OpenAIFinetuneEngine,创建了一个新的微调模型,测试了它的性能,并将其与基本模型进行了比较。

可以看到,因为GPT4和gpt-3.5 turbo的巨大成本差异(20倍),在使用微调后,我们可以得到近似的效果,并且还能节省不少成本(2.5倍)

如果你对这个方法感兴趣,源代码在这里:

https://colab.research.google.com/github/wenqiglantz/nvidia-sec-finetuning/blob/main/nvidia_sec_finetuning.ipynb

作者:Wenqi Glantz

发布于 2023-09-06 10:09・IP 属地北京

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195740.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IIC协议保姆级教学

目录 1.IIC协议概述 2.IIC总线传输 3.IIC-51单片机应用 1.起始信号 2.终止信号 3.应答信号 4.数据发送 4.IIC-32单片机应用 用到的库函数: 1.IIC协议概述 IIC全称Inter-Integrated Circuit (集成电路总线)是由PHILIPS公司在80年代开发的两线式串行总线&am…

【Spring】IoC容器的一些总结与补充

文章目录 1. 创建容器的两种方式相对路径导入绝对路径导入 2. 获取Bean的三种方式getBean后强转类型getBean内写明类别根据类别获取bean 3. 容器层次结构4. BeanFactory5. bean的总结6. 注入的总结 1. 创建容器的两种方式 相对路径导入 ApplicationContext ctx new ClassPat…

一些RLHF的平替汇总

卷友们好,我是rumor。 众所周知,RLHF十分玄学且令人望而却步。我听过有的小道消息说提升很大,也有小道消息说效果不明显,究其根本还是系统链路太长自由度太高,不像SFT一样可以通过数据配比、prompt、有限的超参数来可控…

电压跟随器

电压跟随器即输入多大电压就输出多大的电压,那其起什么作用呢,直接用导线不行吗? 下图为Multisim软件仿真结果,很明显输入电压6.5V输出电压使用万用表测得同为6.5V,验证了电压跟随器的作用。 在同相放大电路的基础上&a…

快速入门ESP32——开发环境配置PlatformIO IDE

相关文章 快速入门ESP32——开发环境配置Arduino IDE 快速入门ESP32——开发环境配置PlatformIO IDE 一、下载安装二、验证 一、下载安装 下载安装 vscode 安装PlatformIO插件 创建工程 二、验证 写一个简单的函数来验证一下功能 void setup() {// put your setup cod…

DevExpress WinForms HeatMap组件,一个高度可自定义热图控件!

通过DevExpress WinForms可以为Windows Forms桌面平台提供的高度可定制的热图UI组件,体验DevExpress的不同之处。 DevExpress WinForms有180组件和UI库,能为Windows Forms平台创建具有影响力的业务解决方案。同时能完美构建流畅、美观且易于使用的应用程…

JVM类加载机制详解

JVM类加载运行全过程 运行Math类的main函数,启动程序时,首先需要通过类加载器把类加载到JVM。 package com.cold;public class Math {public int compute() {int a 1;int b 2;int c (a b) * 10;return c;}public static void main(String[] args) …

vue2 tinymce富文本插件

一、介绍 TinyMCE是一款易用、且功能强大的所见即所得的富文本编辑器。同类程序有:UEditor、Kindeditor、Simditor、CKEditor、wangEditor、Suneditor、froala等等。 TinyMCE的优势: 开源可商用,基于LGPL2.1插件丰富,自带插件基…

4核8G服务器价格选择轻量还是CVM合适?

腾讯云服务器4核8G配置优惠价格表,轻量应用服务器和CVM云服务器均有活动,云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元,5年6490.44元,轻量应用服务器4核8G12M带宽一年446元、529元15个月,腾讯云百科txybk.com分…

【论文解读】CP-SLAM: Collaborative Neural Point-based SLAM System_神经点云协同SLAM系统(下)

目录 4 CP-SLAM实验 4.1 两个智能体协作( Two-agent Collaboration) 4.2 单智能体回环(Single Agent with Loop) 4.3 地图构建(Map Reconstruction) 4.4 消融实验 姿态图优化(Pose Graph …

JUC工具类_CyclicBarrier与CountDownLatch

最近被问到CyclicBarrier和CountDownLatch相关的面试题,CountDownLatch平时工作中经常用到,但是CyclicBarrier没有用过,一时答不上来,因此简单总结记录一下 1.什么是CyclicBarrier? 1.1 概念 CyclicBarrier&#xff…

简单漂亮的首页

效果图 说明 这个首页我也是构思了很久&#xff0c;才想出这个界面&#xff0c;大家喜欢的话&#xff0c;可以拿走去使用 技术的话&#xff0c;采用的就是vue的语法&#xff0c;但是不影响&#xff0c;很多样式我都是直接手敲出来的 代码实现 标语 <!-- 标语 start-->&…

hive sql 取当周周一 str_to_date(DATE_FORMAT(biz_date, ‘%Y%v‘), ‘%Y%v‘)

select str_to_date(DATE_FORMAT(biz_date, %Y%v), %Y%v)方法拆解 select DATE_FORMAT(now(), %Y%v), str_to_date(202346, %Y%v)

【7】Spring Boot 3 集成组件:缓存组件 spring cache + spring data redis

目录 【7】Spring Boot 3 集成组件&#xff1a;缓存组件 spring cache spring data redis什么是缓存抽象声明式注解JSR-107对应SpEL上下文数据 引入依赖cache 支持的缓存类型缓存类型配置NONESIMPLEREDIS自定义配置 CAFFEINE Hazelcast...总结 个人主页: 【⭐️个人主页】 需要…

01Urllib

1.什么是互联网爬虫&#xff1f; 如果我们把互联网比作一张大的蜘蛛网&#xff0c;那一台计算机上的数据便是蜘蛛网上的一个猎物&#xff0c;而爬虫程序就是一只小蜘蛛&#xff0c;沿着蜘蛛网抓取自己想要的数据 解释1&#xff1a;通过一个程序&#xff0c;根据Url(http://www.…

DMA原理和应用

目录 1.什么是DMA 2.DMA的意义 3.DMA搬运的数据和方式 4.DMA 控制器和通道 5.DMA通道的优先级 6.DMA传输方式 7.DMA应用 实验一: 内存到内存搬运 CubeMX配置&#xff1a; ​编辑用到的库函数&#xff1a; 代码实现思路&#xff1a; 实验二: 内存到外设搬运 CubeMX…

一文看分布式锁

为什么会存在分布式锁&#xff1f; 经典场景-扣库存&#xff0c;多人去同时购买一件商品&#xff0c;首先会查询判断是否有剩余&#xff0c;如果有进行购买并扣减库存&#xff0c;没有提示库存不足。假如现在仅存有一件商品&#xff0c;3人同时购买&#xff0c;三个线程同时执…

MySQL内部组件与日志详解

MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等&#xff09;&am…

Linux网络之传输层协议tcp/udp

文章目录 目录 一、再谈端口号 1.端口号划分 2.知名端口号 3.netstat&#xff0c;pidof 二、UDP协议 1.udp协议格式 2.udp特点 3.基于udp的应用层协议 三、TCP协议 1.tcp报头 确认应答机制&#xff08;ACK) 超时重传机制 连接管理机制&#xff08;三次握手四次挥…

Java JVM虚拟机

加载字节码文件.class 1字节一般为8位 字节码结构: 第一部分 4字节 cafebaby 第二部分 版本号 00 00 00 32, 第三部分 常量数量 count 第四部分常量池 常量类型表示: 继承关系改变 1.1以后 后面是属性方法 等参数 通过javap 反编译class ,javap xx.class javap -c xxx.…