YOLOv5 配置C2模块构造新模型

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

目标:在YOLOv5s网络模型中,修改common.py、yolo.py、yolov5s.yaml文件,将C2模块插入第2层与第3层之间,且跑通YOLOv5s。

操作步骤:

1.在common.py文件中插入C2模块

class C2(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

 

2.修改yolo.py文件,改动模型框架

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):with contextlib.suppress(NameError):args[j] = eval(a) if isinstance(a, str) else a  # eval stringsn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

函数用于将模型的模块拼接起来,搭建完成的网络模型。后续如果需要动模型框架的话,需要对这个函数做相应的改动。

修改前:

修改后:

 3.yolov5s.yaml文件中加入C2层

4.命令窗运行

python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt

运行结果: 

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments
Traceback (most recent call last):File "D:\yolov5-master\train.py", line 647, in <module>main(opt)File "D:\yolov5-master\train.py", line 536, in maintrain(opt.hyp, opt, device, callbacks)File "D:\yolov5-master\train.py", line 130, in trainmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # createFile "D:\yolov5-master\models\yolo.py", line 185, in __init__self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistFile "D:\yolov5-master\models\yolo.py", line 319, in parse_modelBottleneckCSP, C2, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
NameError: name 'C2' is not defined. Did you mean: 'c2'?D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]2                -1  1     18816  models.common.C3                        [64, 64, 1]3                -1  1     18816  models.common.C2                        [64, 64, 1]4                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]5                -1  2    115712  models.common.C3                        [128, 128, 2]6                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]7                -1  3    625152  models.common.C3                        [256, 256, 3]8                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]9                -1  1   1182720  models.common.C3                        [512, 512, 1]10                -1  1    656896  models.common.SPPF                      [512, 512, 5]11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']13           [-1, 6]  1         0  models.common.Concat                    [1]14                -1  1    361984  models.common.C3                        [512, 256, 1, False]15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']17           [-1, 4]  1         0  models.common.Concat                    [1]18                -1  1     90880  models.common.C3                        [256, 128, 1, False]19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]20          [-1, 14]  1         0  models.common.Concat                    [1]21                -1  1    329216  models.common.C3                        [384, 256, 1, False]22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]23          [-1, 10]  1         0  models.common.Concat                    [1]24                -1  1   1313792  models.common.C3                        [768, 512, 1, False]25      [17, 20, 23]  1     38097  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]
YOLOv5s summary: 232 layers, 7226897 parameters, 7226897 gradients, 17.2 GFLOPsTransferred 49/379 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 62 weight(decay=0.0), 65 weight(decay=0.0005), 65 bias
train: Scanning D:\yolov5-master\Y2\train... 1 images, 0 backgrounds, 159 corrupt: 100%|██████████| 160/160 [00:13<00:0
train: WARNING   D:\yolov5-master\Y2\images\fruit1.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit1.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit10.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit10.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit100.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit100.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit102.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit102.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit103.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit103.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit104.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit104.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit106.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit106.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit108.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit108.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit109.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit109.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit11.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit11.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit110.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit110.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit111.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit111.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit113.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit113.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit114.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit114.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit115.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit115.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit116.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit116.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit117.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit117.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit118.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit118.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit119.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit119.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit12.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit12.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit120.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit120.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit121.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit121.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit122.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit122.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit123.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit123.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit124.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit124.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit125.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit125.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit127.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit127.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit129.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit129.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit13.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit13.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit130.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit130.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit131.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit131.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit132.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit132.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit133.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit133.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit134.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit134.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit135.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit135.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit136.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit136.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit138.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit138.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit14.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit14.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit142.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit142.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit143.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit143.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit144.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit144.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit145.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit145.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit147.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit147.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit148.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit148.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit149.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit149.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit15.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit15.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit151.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit151.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit152.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit152.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit155.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit155.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit156.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit156.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit157.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit157.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit158.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit158.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit159.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit159.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit16.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit16.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit161.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit161.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit162.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit162.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit163.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit163.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit164.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit164.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit165.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit165.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit167.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit167.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit168.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit168.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit169.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit169.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit17.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit17.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit170.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit170.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit171.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit171.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit172.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit172.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit173.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit173.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit174.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit174.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit175.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit175.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit176.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit176.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit177.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit177.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit178.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit178.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit179.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit179.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit18.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit18.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit180.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit180.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit181.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit181.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit182.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit182.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit183.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit183.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit184.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit184.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit185.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit185.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit186.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit186.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit187.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit187.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit188.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit188.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit19.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit19.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit196.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit196.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit197.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit197.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit198.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit198.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit199.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit199.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit2.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit2.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit200.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit200.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit202.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit202.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit208.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit208.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit209.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit209.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit211.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit211.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit22.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit22.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit23.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit23.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit25.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit25.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit26.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit26.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit27.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit27.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit28.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit28.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit29.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit29.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit3.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit3.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit30.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit30.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit31.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit31.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit33.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit33.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit34.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit34.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit35.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit35.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit36.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit36.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit38.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit38.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit39.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit39.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit4.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit4.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit40.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit40.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit43.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit43.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit44.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit44.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit45.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit45.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit46.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit46.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit49.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit49.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit50.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit50.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit51.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit51.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit52.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit52.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit53.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit53.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit54.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit54.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit55.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit55.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit57.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit57.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit59.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit59.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit6.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit6.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit60.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit60.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit61.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit61.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit62.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit62.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit63.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit63.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit65.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit65.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit66.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit66.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit68.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit68.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit69.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit69.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit7.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit7.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit70.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit70.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit71.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit71.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit73.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit73.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit74.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit74.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit75.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit75.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit77.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit77.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit78.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit78.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit79.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit79.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit80.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit80.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit81.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit81.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit82.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit82.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit83.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit83.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit85.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit85.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit86.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit86.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit87.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit87.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit88.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit88.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit89.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit89.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit90.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit90.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit91.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit91.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit94.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit94.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit95.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit95.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit97.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit97.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit98.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit98.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit99.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit99.png'
train: WARNING  Cache directory D:\yolov5-master\Y2 is not writeable: [WinError 183] : 'D:\\yolov5-master\\Y2\\train.cache.npy' -> 'D:\\yolov5-master\\Y2\\train.cache'
val: Scanning D:\yolov5-master\Y2\val.cache... 1 images, 0 backgrounds, 19 corrupt: 100%|██████████| 20/20 [00:00<?, ?i
val: WARNING   D:\yolov5-master\Y2\images\fruit107.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit107.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit112.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit112.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit139.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit139.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit140.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit140.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit141.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit141.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit146.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit146.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit20.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit20.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit210.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit210.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit24.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit24.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit32.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit32.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit41.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit41.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit47.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit47.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit48.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit48.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit5.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit5.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit64.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit64.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit8.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit8.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit84.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit84.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit92.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit92.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit96.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit96.png'AutoAnchor: 4.33 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp12\labels.jpg...
Image sizes 928 train, 928 val
Using 0 dataloader workers
Logging results to runs\train\exp12
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/99         0G     0.1123    0.06848    0.04815          7        928:   0%|          | 0/1 [00:01<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.0/99         0G     0.1123    0.06848    0.04815          7        928: 100%|██████████| 1/1 [00:02<00:00,  2.97Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00439      0.333     0.0474     0.0121Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size1/99         0G     0.1105    0.06846    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00926      0.333     0.0332     0.0154Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size2/99         0G     0.1139    0.05816    0.04684          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00926      0.333     0.0332     0.0154Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size3/99         0G    0.07328    0.05078    0.03088          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size4/99         0G    0.06693    0.05186    0.03044          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.47Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size5/99         0G     0.1102    0.09702    0.04647         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size6/99         0G     0.1147    0.07053    0.04376          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.48Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size7/99         0G    0.06716    0.05544    0.02962          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size8/99         0G     0.1161    0.05993    0.04253          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size9/99         0G     0.1187    0.05657     0.0432          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size10/99         0G     0.1163    0.09305    0.04868         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size11/99         0G    0.07575    0.04969    0.03171          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.42Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size12/99         0G     0.1092    0.09129      0.045         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size13/99         0G     0.1003    0.05476    0.04605          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size14/99         0G    0.07006    0.05166    0.03166          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size15/99         0G     0.1156    0.05315    0.04495          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size16/99         0G     0.1143     0.0559      0.045          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.48Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size17/99         0G    0.08845     0.0449    0.02645          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size18/99         0G     0.1189    0.05909    0.04975          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size19/99         0G     0.1113    0.05739    0.04547          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size20/99         0G      0.117    0.07437    0.04842         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size21/99         0G      0.109    0.06155     0.0505          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size22/99         0G     0.1073     0.1035    0.04515         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size23/99         0G     0.1257     0.0527    0.04264          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size24/99         0G     0.1036     0.0745    0.04745          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size25/99         0G     0.1112     0.1054    0.04881         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size26/99         0G     0.1053    0.08021    0.04656          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size27/99         0G     0.1208    0.05651    0.04577          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size28/99         0G    0.07633     0.0537    0.03023          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size29/99         0G     0.1162    0.05969    0.04597          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size30/99         0G     0.1117    0.07415    0.04961          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size31/99         0G     0.1132    0.06359    0.04704          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size32/99         0G    0.08006    0.05026    0.02591          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size33/99         0G     0.1117      0.104    0.04704         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size34/99         0G     0.1135    0.06241    0.04401          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size35/99         0G     0.1117    0.07476    0.04524          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size36/99         0G     0.1134    0.09759    0.04479         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size37/99         0G     0.1184    0.06637    0.04515          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size38/99         0G    0.08484    0.04526    0.02921          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size39/99         0G    0.09749     0.0813    0.04582          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.57Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size40/99         0G     0.1117    0.07415      0.046          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size41/99         0G     0.1117    0.07245    0.04489          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size42/99         0G     0.1094    0.05986    0.04839          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size43/99         0G     0.1097     0.0697    0.04865          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size44/99         0G     0.1108    0.09187    0.04328         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.57Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size45/99         0G     0.1126    0.05993      0.047          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.52Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size46/99         0G     0.0688    0.05024    0.03075          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.53Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size47/99         0G      0.112    0.09688    0.04424         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size48/99         0G     0.1166    0.06569    0.04565          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.53Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size49/99         0G     0.1118    0.05801    0.04417          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size50/99         0G     0.1097     0.1048    0.04665         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size51/99         0G     0.1218    0.06085    0.04525          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.83Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size52/99         0G     0.1056    0.08698    0.04532          9        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size53/99         0G    0.06761    0.05242    0.03217          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size54/99         0G     0.1044     0.1022     0.0441         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.60Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size55/99         0G     0.1269    0.05652    0.04289          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.87Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size56/99         0G     0.1112     0.0772    0.04683          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.86Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size57/99         0G     0.1144    0.05499    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.78Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size58/99         0G    0.07043     0.0666     0.0297          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size59/99         0G     0.1092    0.09867    0.04592         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.72Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size60/99         0G       0.12    0.05285    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size61/99         0G     0.0728    0.05391    0.02953          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.75Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size62/99         0G     0.1164    0.05441    0.04357          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.91Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size63/99         0G     0.1123     0.1039     0.0476         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.82Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size64/99         0G     0.1089      0.064    0.04559          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.69Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size65/99         0G     0.1152    0.07665    0.04802          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size66/99         0G     0.1186    0.06205     0.0432          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.74Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size67/99         0G      0.114    0.06644    0.04486          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.88Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size68/99         0G     0.1118    0.05814    0.04571          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.89Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size69/99         0G      0.106     0.0762    0.04522          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.88Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size70/99         0G     0.1068    0.06769      0.048          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size71/99         0G       0.11     0.1035    0.04768         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size72/99         0G     0.1071    0.05783    0.04588          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size73/99         0G      0.107    0.06332    0.04598          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.72Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size74/99         0G     0.1127    0.09514    0.04832         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size75/99         0G    0.07471    0.05085    0.03363          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.62Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size76/99         0G    0.07295    0.05077    0.03028          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size77/99         0G     0.1221     0.0522     0.0502          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.73Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size78/99         0G     0.1159    0.05984    0.04441          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.86Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size79/99         0G     0.0764    0.05256    0.03172          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.81Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size80/99         0G    0.07563    0.05452    0.03032          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.73Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size81/99         0G    0.06719     0.0531    0.02945          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size82/99         0G     0.1076    0.06686    0.04691          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size83/99         0G     0.1112    0.07135    0.04413          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.70Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size84/99         0G     0.1116    0.09399    0.04413         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size85/99         0G     0.1116    0.06021    0.04635          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size86/99         0G     0.1096     0.1032    0.04634         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size87/99         0G     0.1143    0.05941    0.04396          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size88/99         0G     0.1161     0.0518    0.04673          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size89/99         0G     0.1106    0.05528    0.04363          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size90/99         0G     0.1238    0.05427    0.04809          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size91/99         0G     0.1104    0.06561    0.04492          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size92/99         0G     0.1137    0.08532    0.04445         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.70Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size93/99         0G     0.1125    0.07016    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size94/99         0G     0.1116    0.05724    0.04418          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size95/99         0G     0.1124     0.1026    0.04744         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.77Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size96/99         0G      0.117    0.05599    0.04682          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size97/99         0G      0.124     0.0617    0.04387          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.75Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size98/99         0G     0.1126     0.1009    0.04399         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size99/99         0G    0.06937    0.05515    0.03017          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0100 epochs completed in 0.067 hours.
Optimizer stripped from runs\train\exp12\weights\last.pt, 15.0MB
Optimizer stripped from runs\train\exp12\weights\best.pt, 15.0MBValidating runs\train\exp12\weights\best.pt...
Fusing layers...
YOLOv5s summary: 170 layers, 7217201 parameters, 0 gradients, 17.0 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0115      0.333     0.0369      0.012banana          1          1          0          0          0          0snake fruit          1          1          0          0          0          0pineapple          1          1     0.0345          1      0.111     0.0359
Results saved to runs\train\exp12

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/195849.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音频类型转换工具-可执行文件exe/dmg制作

朋友车载音乐需要MP3格式&#xff0c;想要个批量转换工具 准备工作 brew install ffmpeg --HEAD或者官网下载安装ffmpeg并配置环境conda install ffmpeg 或者pip install ffmpeg-python 音频类型转换程序.py文件 exe文件在windows下打包&#xff0c;dmg在macos下打包&#…

【数字人】7、GeneFace++ | 使用声音和面部运动系数的关系作为 condition 来指导 NeRF 重建说话头

文章目录 一、背景二、相关工作2.1 唇形同步的 audio-to-motion2.2 真实人像渲染 三、方法3.1 对 GeneFace 的继承3.2 GeneFace 的结构3.2.1 Pitch-Aware Audio-to-Motion Transform3.2.2 Landmark Locally Linear Embedding3.2.3 Instant Motion-to-Video Rendering 四、效果 …

Boolean源码解剖学

原创/朱季谦 有天突发其想&#xff0c;想看一下Boolean底层都做了些什么&#xff0c;故而去看了一番Boolean的源码&#xff0c;基于一些思考的基础上&#xff0c;输出了这篇文章。 一.类继承 Boolean的源码类定义部分如下&#xff1a; 1 public final class Boolean implemen…

HP惠普暗影精灵9笔记本电脑OMEN by HP Transcend 16英寸游戏本16-u0000原厂Windows11系统

惠普暗影9恢复出厂开箱状态&#xff0c;原装出厂Win11-22H2系统ISO镜像 下载链接&#xff1a;https://pan.baidu.com/s/17ftbBHEMFSEOw22tnYvPog?pwd91p1 提取码&#xff1a;91p1 适用型号&#xff1a;16-u0006TX、16-u0007TX、16-u0008TX、16-u0009TX、16-u0017TX 原厂系…

【docker启动的Jenkins时,遇到时区问题处理】

1、查看容器中的时区 [rootlocalhost jenkins]# docker exec -it jenkins cat /etc/timezone Etc/UTC而本地使用的是Asia/shanghai [rootlocalhost jenkins]# timedatectl | grep Time zoneTime zone: n/a (CST, 0800)###查看 [rootlocalhost jenkins]# cd /usr/share/zoneinf…

【数据结构(二)】稀疏 sparsearray 数组(1)

文章目录 1. 稀疏数组的应用场景1.1. 一个实际的需求1.2. 基本介绍 2. 稀疏数组转换的思路分析3. 稀疏数组的代码实现3.1. 二维数组转稀疏数组3.2. 稀疏数组转二维数组 4. 课后练习 1. 稀疏数组的应用场景 1.1. 一个实际的需求 问题&#xff1a;     编写的五子棋程序中&…

【VSCode】配置C/C++开发环境教程(Windows系统)

下载和配置MinGW编译器 首先&#xff0c;我们需要下载并配置MinGW编译器。 下载MinGW编译器&#xff0c;并将其放置在一个不含空格和中文字符的目录下。 配置环境变量PATH 打开控制面板。可以通过在Windows搜索栏中输入"控制面板"来找到它。 在控制面板中&#xf…

JavaScript 浮点数运算的精度问题及解决

JavaScript 浮点数运算的精度问题及解决 在 JavaScript 中整数和浮点数都属于 Number 数据类型&#xff0c;当浮点数做数学运算的时候&#xff0c;你经常会发现一些问题&#xff0c;举几个例子&#xff1a; 0.1 0.2 0.30000000000000004 console.log(0.1 0.2) 0.3000000…

vite+vue3+electron开发环境搭建

环境 node 18.14.2 yarn 1.22 项目创建 yarn create vite test01安装vue环境 cd test01 yarn yarn dev说明vue环境搭建成功 安装electron # 因为有的版本会报错所以指定了版本 yarn add electron26.1.0 -D安装vite-plugin-electron yarn add -D vite-plugin-electron根目…

关系代数、SQL语句和Go语言示例

近些年&#xff0c;数据库领域发展日新月异&#xff0c;除传统的关系型数据库外&#xff0c;还出现了许多新型的数据库&#xff0c;比如&#xff1a;以HBase、Cassandra、MongoDB为代表的NoSQL数据库&#xff0c;以InfluxDB、TDEngine为代表的时序数据[1]库&#xff0c;以Neo4J…

二分查找和二分答案

【深基13.例1】查找 题目描述 输入 n n n 个不超过 1 0 9 10^9 109 的单调不减的&#xff08;就是后面的数字不小于前面的数字&#xff09;非负整数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_{n} a1​,a2​,…,an​&#xff0c;然后进行 m m m 次询问。对于每次询问&#x…

Django 配置 Email Admin 详细指南

概要 Django 是一个高级的 Python Web 框架&#xff0c;它鼓励快速开发和清洁、实用的设计。当你正在开发一个 Django 项目时&#xff0c;监控网站的运行情况是非常必要的。Django 提供了一个功能强大的 admin 界面&#xff0c;但同时也可以通过配置 email admin 来获取网站的…

vue-pdf在vue框架中的使用

在components目录下新建PdfViewer/index.vue vue-pdf版本为4.3.0 <template><div :id"containerId" v-if"hasProps" class"container"><div class"right-btn"><div class"pageNum"><input v-m…

2023年(第六届)电力机器人应用与创新发展论坛-核心PPT资料下载

一、峰会简介 大会以“聚焦电力机器人创新、助力行业数字化转型、促进产业链协同发展”为主题&#xff0c;展示电力机器人产业全景创新技术&#xff0c;探讨数字化战略下电力机器人应用前景和发展趋势。为加快推进电力机器人应用拓新&#xff0c;助力电网数字化转型升级&#…

Xrdp+Cpolar实现远程访问Linux Kali桌面

XrdpCpolar实现远程访问Linux Kali桌面 文章目录 XrdpCpolar实现远程访问Linux Kali桌面前言1. Kali 安装Xrdp2. 本地远程Kali桌面3. Kali 安装Cpolar 内网穿透4. 配置公网远程地址5. 公网远程Kali桌面连接6. 固定连接公网地址7. 固定地址连接测试 前言 Kali远程桌面的好处在于…

B站批量取消关注

找到关注页面&#xff1a; 右键检查或者按F12进入开发者界面 然后选console&#xff0c;在页面下面输入下面jQuery代码&#xff0c;然后按回车。复制粘贴两次这一页的博主就能全部取消大概20个 然后刷新页面&#xff0c;接着粘贴两边代码&#xff0c;循环如此即可。 $(".…

【XTDrone Ubuntu20.04】XTDrone+ Ubuntu20.04 + PX4安装

XTDrone仿真平台配置 文章目录 XTDrone仿真平台配置依赖安装 ROS一键安装Marvos安装PX4 安装安装QTGroundControlXTDrone下载安装 环境&#xff1a; VMWare 16.0 Ubuntu 22.04 &#xff08;因为没人配过&#xff09;Ubuntu 20.04 参考文章&#xff1a; 仿真平台基础配置 (yuq…

docker数据卷详细讲解及数据卷常用命令

docker数据卷详细讲解及数据卷常用命令 Docker 数据卷是一种将宿主机的目录或文件直接映射到容器中的特殊目录&#xff0c;用于实现数据的持久化和共享。Docker 数据卷有以下特点&#xff1a; 数据卷可以在一个或多个容器之间共享和重用&#xff0c;不受容器的生命周期影响。…

计算机毕业设计 基于SpringBoot的医院档案管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

C++单调向量算法:132 模式解法三枚举1

本题不同解法 包括题目及代码C二分查找算法&#xff1a;132 模式解法一枚举3C二分查找算法&#xff1a;132 模式解法二枚举2代码最简洁C二分查找算法&#xff1a;132 模式解法三枚举1性能最佳C单调向量算法&#xff1a;132 模式解法三枚举1 分析 时间复杂度 2轮循环时间复杂…