解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 

图片

快速浏览一下头条新闻,你会发现生成式AI似乎无处不在。事实上,一些新闻标题甚至可能是通过生成式AI编写的,例如OpenAI旗下的ChatGPT,这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。

当人们提到“生成式人工智能”时,他们指的到底是什么?

在生成式AI热潮兴起之前,当人们谈论人工智能时,通常是指那些可以基于数据进行预测的机器学习模型。例如,通过数百万个示例对此类模型进行训练,以预测某种X射线是否显示出肿瘤的迹象,或者某个借款人是否可能拖欠贷款。

图片

生成式 AI 可以被认为是一种另类的机器学习模型,经过训练后可以创建新数据,而不是对特定数据集进行预测。生成式AI系统指的是用来生成类似于其训练数据的更多对象的系统。“当涉及到生成式AI和其他类型的AI背后的技术时,它们之间的界限可能有点模糊。通常相同的算法可以用于两者,“麻省理工学院电气工程与计算机科学副教授、计算机科学与人工智能实验室(CSAIL)成员Phillip Isola表示。

尽管 ChatGPT 及其同类产品的发布引起了广泛的关注和讨论,但该技术本身并不是全新的。这些强大的机器学习模型是基于超过50年的研究和计算技术进步。

01

复杂性的提升

生成式AI的一个早期实例被称为马尔可夫链。该技术以俄罗斯数学家安德烈·马尔科夫(Andrey Markov)的名字命名,他在1906年引入了这种统计方法来模拟随机过程的行为。在机器学习中,马尔可夫模型长期被用于如电子邮件程序中预测下一个单词的自动填充任务。

图片

在文本预测中,马尔可夫模型能够通过分析前一个或几个单词来生成句子中的下一个单词。但这些模型由于只能回顾有限的信息,因此生成的文本往往不够合理,MIT电气工程与计算机科学Thomas Siebel教授、CSAIL和数据、系统与社会研究所(IDSS)成员Tommi Jaakkola表示。“我们在过去十年之前就开始进行生成式操作,但主要区别在于我们现在能生成的对象的复杂性以及训练这些模型的规模。”他补充道。

在几年前,研究人员倾向于寻找一种能够充分利用特定数据集的机器学习算法。但现在这种焦点已经略有转移,许多研究人员开始利用更大规模的数据集,可能包括数亿甚至数十亿数据点,来训练能够取得卓越成果的模型。

ChatGPT及其类似系统的基础模型在工作方式上与马尔可夫模型大致相同。区别在于,ChatGPT规模更大、更复杂,有数十亿个参数,并且它已经接受了互联网上可公开获取的大量数据的训练。在这个庞大的文本资料库中,单词和句子以具有某些依赖关系的顺序出现,这种重复性有助于模型了解如何将文本切割为具有一定可预测性的统计块。模型通过学习这些文本块的模式,并利用此知识来预测接下来可能出现的内容。

图片

02

更强大的架构

庞大的数据集是推动生成式AI热潮的催化剂之一,重要的研究进展也促成了更为复杂的深度学习架构的发展。

2014年,蒙特利尔大学的研究人员提出了一种名为生成对抗网络(GAN)的机器学习架构。GAN使用两个协同工作的模型:一个学习生成目标输出(如图像),另一个学习从生成器的输出中区分真实数据。生成器试图欺骗鉴别器,并在此过程中学习制作更逼真的输出。图像生成器StyleGAN就是基于此类模型的实例。

此后一年,斯坦福大学和加州大学伯克利分校的研究人员引入了扩散模型,通过迭代优化其输出,这些模型可以学习生成类似于训练数据集中样本的新数据样本,并用于创建逼真的图像。

图片

2017年,谷歌的研究人员推出了transformer架构,该架构已被用于开发大型语言模型,比如驱动ChatGPT的模型。在自然语言处理中,Transformer将文本语料库中的每个词编码为一个令牌,然后生成一个注意力图,该图捕捉每个令牌与所有其他令牌的关系。这个注意力图帮助Transformer在生成新文本时理解上下文。

这些仅仅是可用于生成式AI的众多方法中的一小部分。

03

应用范围广泛

这些方法的共同特点是将输入转换为一组令牌,这些令牌是数据块的数值表示形式。只要数据可以转换为这种标准的令牌格式,理论上可以应用这些方法来生成类似的新数据。“效果会因数据复杂度和信号提取难度而异,但它实际上越来越接近于通用CPU处理任意类型数据的方式,”Isola表示。

这为生成式AI开辟了大量的应用场景:

例如,Isola的团队正在使用生成式AI来创建合成图像数据,这些数据可用于训练另一个智能系统,例如教计算机视觉模型如何识别物体。

Jaakkola的团队正在使用生成式AI来设计新的蛋白质结构或有效的晶体结构以指定新材料。就像生成模型学习语言的依赖性一样,如果展示晶体结构,它也可以学习使结构稳定和可实现的关系。

图片

尽管生成模型可以取得惊人的成果,但它们并非适用于所有类型的数据,对于那些涉及在结构化数据(如电子表格中的表格数据)上进行预测的任务,生成式AI模型往往不如传统的机器学习方法。

04

生成式AI的机遇与风险

生成式AI聊天机器人目前在呼叫中心被用来解答客户的问题,但这一应用凸显了实施这些模型可能带来的一个潜在问题——人类的工作岗位被替代。此外,生成式AI可能会继承和扩散训练数据中存在的偏见,或放大仇恨言论和虚假陈述。同时这些模型具有抄袭的能力,并且可以生成看起来像是由特定人创作的内容,从而引发潜在的版权纠纷。

但另一方面,麻省理工学院的研究人员提出,生成式AI可能赋能艺术家,他们可以利用生成工具帮助创作他们可能无法用其他方式制作的创意内容。而在其他领域——如制造业,研究人员认为,在未来生成式AI不仅是让模型生成椅子的图像,它也许能生成可实际制造的椅子设计方案,这类应用或将彻底改变许多领域的经济格局。

若您对该文章内容有任何疑问,请与我们联系,我们将及时回应。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196210.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu18.04安装Loam保姆级教程

系统环境:Ubuntu18.04.6 LTS 1.Loam的安装前要求: 1.1 ROS安装:参考我的另一篇博客 Ubuntu18.04安装ROS-melodic保姆级教程_灬杨三岁灬的博客-CSDN博客还是那句话,有时候加了这行也不好使,我是疯狂试了20次&#xf…

用script去做前端html表格分页/排序

前言: 掘弃掉与后端交互做分页和互导,有利有弊吧; 在小数据的时候,如果不停来回朝服务端发送请求,会造成堵塞.于是,放弃了之前的前后端ajax方式去请求分页表格,使用script去弄一个,降低服务器的压力; 整体思路图: 代码构造: {% extends "order_header_same.html" …

stm32入门建议跳过固件库去学习hal库吗?

stm32入门建议跳过固件库去学习hal库吗? 如果要以单片机作为以后的工作方向,建议还是深入了解一下单片机的原理与机制,比如串口收发的时候,内部的寄存器是怎么工作的,中断又是怎么工作的,然后我们又是怎么进行中断处…

uniapp优化h5项目-摇树优化,gzip压缩和删除console.log

1.摇树优化 勾选摇树优化,打包删除死代码 2.gzip压缩和删除console.log 安装插件webpack和compression-webpack-plugin webpack插件 npm install webpack4.46.0 --save-devcompression-webpack-plugin插件 npm install compression-webpack-plugin6.1.1 --save-devconst Com…

代码随想录算法训练营第25天|216.组合总和III 17.电话号码的字母组合

JAVA代码编写 216. 组合总和III 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件: 只使用数字1到9每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 示例 1: 输入: k …

【观察】华为:数智世界“一触即达”,应对数智化转型“千变万化”

毫无疑问,数智化既是这个时代前进所趋,也是国家战略所指,更是所有企业未来发展进程中达成的高度共识。 但也要看到,由于大量新兴技术的出现,技术热点不停的轮转,加上市场环境的快速变化,让数智化…

数据结构--栈与队列

目录 前言 1.栈 1.1栈的概念及结构 1.2接口函数 1.3函数实现 1.4如何使用 2.队列 2.1队列的概念及结构 2.2接口函数 2.3函数实现 2.4如何使用 前言 前面我们已经学习了顺序表和链表,今天我们来学习栈与队列,这两种结构也属于线性表,实…

顺序表(数据结构与算法)

✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨ 🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿🌿&#x1…

从0开始学习JavaScript--JavaScript 流程控制

JavaScript中的流程控制结构是编写结构化、可读性强的代码的关键。本文将深入研究JavaScript中的流程控制,包括条件语句、循环结构、跳转语句等,并通过丰富的示例代码来更全面地了解和运用这些概念。 条件语句 条件语句用于基于不同的条件执行不同的代…

架构开发与优化咨询和实施服务

服务概述 得益于硬件平台算力的提升,汽车电子电气架构的集成度逐渐提高,从单体ECU、到功能域集成控制器、到区域集成控制器,多域融合成为了目前行业中软件工程的重要工作内容。同时,在传统控制器C代码开发的基础上,C、…

C#中.NET 7.0 Windows窗体应用通过EF访问新建数据库

目录 一、 操作步骤 二、编写EF模型和数据库上下文 三、移植(Migrations)数据库 四、编写应用程序 五、生成效果 前文已经说过.NET Framework4.8 控制台应用通过EF访问已经建立的和新建的数据库。 前文已经说过.NET 6.0 控制台应用通过EF访问…

μC/OS-II---事件标志组管理1(os_flag.c)

目录 事件标志组创建事件标志组删除事件标志组获取/等待 当任务要与多个事件同步时,就要使用事件标志组。一个事件标志就是一个二值信号,事件标志组是若干二值信号的组合。使用事件标志组同步任务分为独立性同步和关联性同步。 事件标志组创建 flags&a…

MySql分区

一、什么是分区 MySQL分区是一种数据库设计和管理技术,它允许你将表分割成独立的、具有特定规则的存储单元。每个分区可以独立地进行管理,包括备份、恢复和优化。分区的主要目的是提高查询性能、简化维护以及实现数据的更有效管理。 以下是MySQL分区的…

IDEA 集成 Docker 插件一键部署 SpringBoot 应用

目录 前言IDEA 安装 Docker 插件配置 Docker 远程服务器编写 DockerFileSpringBoot 项目部署配置SpringBoot 项目部署结语 前言 随着容器化技术的崛起,Docker成为了现代软件开发的关键工具。在Java开发中,Spring Boot是一款备受青睐的框架,然…

PCL 半径滤波剔除噪点(二)

目录 一、算法原理二、注意事项三、代码实现一、算法原理 PCL半径滤波是删除在输入的点云一定范围内没有达到足够多领域的所有数据点。通俗的讲:就是以一个点p给定一个范围r,领域点要求的个数为m,r若在这个点的r范围内部的个数大于m则保留,小于m则删除。因此,使用该算法时…

阎良区公益创投之“小飞机大梦想” 航模DIY主题活动

创造是人类探索迈出的第一步,科学是开启奇妙世界的金钥匙。为进一步提升“未来星”对科技知识的兴趣,培养他们的科学创新精神,11月16日,阎良区社会组织公益创投——“未来星”助力乡村留守儿童成长计划项目在阎良区聚宝小学开展“…

【淘宝API】商品详情+搜索商品列表接口

淘宝商品详情API接口可以使用淘宝开放平台提供的SDK或API来获取。这些接口可以用于获取商品的详细信息,如标题、价格、描述、图片等。 以下是使用淘宝开放平台API获取商品详情的步骤: 注册淘宝开放平台账号,并创建应用,获取应用…

【具身智能评估1】具身视觉语言规划(EVLP)仿真环境汇总

参考论文:Core Challenges in Embodied Vision-Language Planning 论文作者:Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu, Ingrid Navarro, Jean Oh 论文原文:https://arxiv.org/abs/2106.13948 论文出处:Jo…

C#学习相关系列之Linq常用方法---排序(一)

一、构建数据 public class Student_1{public int ID { get; set; }public string Name { get; set; }public int Chinese { get; set; }public int Math { get; set; }public int English { get; set; }public override string ToString(){return string.Format("ID:{0},…

企业视频数字人有哪些应用场景

来做个数字人吧,帮我干点活吧。 国内的一些数字人: 腾讯智影 腾讯智影数字人是一种基于人工智能技术的数字人物形象,具有逼真的外观、语音和行为表现,可以应用于各种场景,如新闻播报、文娱推介、营销、教育等。 幻…