ClickHouse建表优化

1. 数据类型

1.1 时间字段的类型

建表时能用数值型或日期时间型表示的字段就不要用字符串,全String类型在以Hive为中心的数仓建设中常见,但ClickHouse环境不应受此影响。

虽然ClickHouse底层将DateTime存储为时间戳Long类型,但不建议存储Long类型,因为DateTime不需要经过函数转换处理,执行效率高、可读性好

create table t_type2(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2) ,
    create_time  Int32  
 ) engine =ReplacingMergeTree(create_time)
   partition by toYYYYMMDD(toDate(create_time)) –-需要转换一次,否则报错
   primary key (id)
   order by (id, sku_id);

1.2 空值存储类型

官方已经指出Nullable类型几乎总是会拖累性能,因为存储Nullable列时需要创建一个额外的文件来存储NULL的标记,并且Nullable列无法被索引。因此除非极特殊情况,应直接使用字段默认值表示空,或者自行指定一个在业务中无意义的值(例如用-1表示没有商品ID)。

CREATE TABLE t_null(x Int8, y Nullable(Int8)) ENGINE TinyLog;

INSERT INTO t_null VALUES (1, NULL), (2, 3);

SELECT x + y FROM t_null;

查看存储的文件:(没有权限就用root用户)

官网说明:可为空(类型名称) | ClickHouse Docs

2 分区和索引

分区粒度根据业务特点决定,不宜过粗或过细。一般选择按天分区,也可以指定为Tuple(),以单表一亿数据为例,分区大小控制在10-30个为最佳。

必须指定索引列,ClickHouse中的索引列即排序列,通过order by指定,一般在查询条件中经常被用来充当筛选条件的属性被纳入进来;可以是单一维度,也可以是组合维度的索引;通常需要满足高级列在前、查询频率大的在前原则;还有基数特别大的不适合做索引列,如用户表的userid字段;通常筛选后的数据满足在百万以内为最佳

比如官方案例的hits_v1表:

……
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
……
visits_v1表:
……
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
……

3 表参数

Index_granularity是用来控制索引粒度的默认是8192,如非必须不建议调整。

如果表中不是必须保留全量历史数据,建议指定TTL(生存时间值),可以免去手动过期历史数据的麻烦,TTL 也可以通过alter table语句随时修改。(参考基础文档4.4.5 数据TTL)

4 写入和删除优化

(1)尽量不要执行单条或小批量删除和插入操作,这样会产生小分区文件,给后台Merge任务带来巨大压力

(2)不要一次写入太多分区,或数据写入太快,数据写入太快会导致Merge速度跟不上而报错,一般建议每秒钟发起2-3次写入操作,每次操作写入2w~5w条数据(依服务器性能而定)

写入过快报错,报错信息:

1. Code: 252, e.displayText() = DB::Exception: Too many parts(304). Merges are processing significantly slower than inserts
2. Code: 241, e.displayText() = DB::Exception: Memory limit (for query) exceeded:would use 9.37 GiB (attempt to allocate chunk of 301989888 bytes), maximum: 9.31 GiB

处理方式:

“ Too many parts 处理 ” :使用WAL预写日志,提高写入性能。

in_memory_parts_enable_wal 默认为 true

在服务器内存充裕的情况下增加内存配额,一般通过max_memory_usage来实现

在服务器内存不充裕的情况下,建议将超出部分内容分配到系统硬盘上,但会降低执行速度,一般通过max_bytes_before_external_group_by、max_bytes_before_external_sort参数来实现。

5 常见配置

配置项主要在config.xml或users.xml中, 基本上都在users.xml

  • config.xml的配置项

Global Server Settings | ClickHouse Docs

  • users.xml的配置项

Core Settings | ClickHouse Docs

5.1 CPU资源

配置

描述

background_pool_size

后台线程池的大小,merge线程就是在该线程池中执行,该线程池不仅仅是给merge线程用的,默认值16,允许的前提下建议改成cpu个数的2倍(线程数)

background_schedule_pool_size

执行后台任务(复制表、Kafka流、DNS缓存更新)的线程数。默认128,建议改成cpu个数的2倍(线程数)。

background_distributed_schedule_pool_size

设置为分布式发送执行后台任务的线程数,默认16,建议改成cpu个数的2倍(线程数)。

max_concurrent_queries

最大并发处理的请求数(包含select,insert等),默认值100,推荐150(不够再加)~300

max_threads

设置单个查询所能使用的最大cpu个数,默认是cpu核数

5.2 内存资源

配置

描述

max_memory_usage

此参数在users.xml  中,表示单次Query占用内存最大值,该值可以设置的比较大,这样可以提升集群查询的上限。

保留一点给OS,比如128G内存的机器,设置为100GB。

max_bytes_before_external_group_by

一般按照max_memory_usage的一半设置内存,当group使用内存超过阈值后会刷新到磁盘进行。

因为clickhouse聚合分两个阶段:查询并及建立中间数据、合并中间数据,结合上一项,建议50GB。

max_bytes_before_external_sort

当order by已使用max_bytes_before_external_sort内存就进行溢写磁盘(基于磁盘排序),如果不设置该值,那么当内存不够时直接抛错,设置了该值order by可以正常完成,但是速度相对存内存来说肯定要慢点(实测慢的非常多,无法接受)。

max_table_size_to_drop

此参数在 config.xml 中,应用于需要删除表或分区的情况,默认是50GB,意思是如果删除50GB以上的分区表会失败。建议修改为0,这样不管多大的分区表都可以删除。

5.3 存储

ClickHouse不支持设置多数据目录,为了提升数据io性能,可以挂载虚拟券组,一个券组绑定多块物理磁盘提升读写性能,多数据查询场景SSD会比普通机械硬盘快2-3倍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197083.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案

原文:[开源]基于 AI 大语言模型 API 实现的 AI 助手全套开源解决方案 一飞开源,介绍创意、新奇、有趣、实用的开源应用、系统、软件、硬件及技术,一个探索、发现、分享、使用与互动交流的开源技术社区平台。致力于打造活力开源社区&#xff0…

【数据结构初阶】链表OJ

链表OJ 题目一:移除链表元素题目二:反转链表题目三:链表的中间节点题目四:链表中倒数第k个结点题目五:合并两个有序链表题目六:链表分割题目七:链表的回文结构题目八:相交链表题目九…

遗传算法GA-算法原理与算法流程图

本站原创文章,转载请说明来自《老饼讲解-BP神经网络》bp.bbbdata.com 目录 一、遗传算法流程图 1.1. 遗传算法流程图 二、遗传算法的思想与机制 2.1 遗传算法的思想 2.2 遗传算法的机制介绍 三、 遗传算法的算法流程 3.1 遗传算法的算法…

Ubuntu20.04 安装微信 【优麒麟的镜像源方式安装】

缺点:是网页版本的嵌入,功能少。 推荐wine方式安装:Ubuntu20.04 安装微信 【wine方式安装】推荐 从优麒麟的镜像源安装原生微信 应用下载-优麒麟|Linux 开源操作系统 新建文件software.list sudo vi /etc/apt/sources.list.d/…

损失函数(Loss Function)与代价函数(Cost Function)、目标函数(Objective Function)区别

损失函数定义在单个样本上,算的是一个样本的误差。 代价函数定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。 目标函数定义为最终需要优化的函数,等于经验风险 结构风险(也就是Cost Function 正则化…

提升工作效率,打造精细思维——OmniOutliner 5 Pro for Mac

在当今快节奏的工作环境中,如何高效地组织和管理我们的思维和任务成为了关键。而OmniOutliner 5 Pro for Mac正是为此而生的一款强大工具。无论你是专业写作者、项目经理还是学生,OmniOutliner 5 Pro for Mac都能帮助你提升工作效率,打造精细…

【开源】基于JAVA的服装店库存管理系统

项目编号: S 052 ,文末获取源码。 \color{red}{项目编号:S052,文末获取源码。} 项目编号:S052,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 服…

正则表达式入门教程

一、本文目标 让你明白正则表达式是什么,并对它有一些基本的了解,让你可以在自己的程序或网页里使用它。 二、如何使用本教程 文本格式约定:专业术语 元字符/语法格式 正则表达式 正则表达式中的一部分(用于分析) 对其进行匹配的源字符串 …

Kafka的重要组件,谈谈流处理引擎Kafka Stream

系列文章目录 上手第一关,手把手教你安装kafka与可视化工具kafka-eagle Kafka是什么,以及如何使用SpringBoot对接Kafka 架构必备能力——kafka的选型对比及应用场景 Kafka存取原理与实现分析,打破面试难关 防止消息丢失与消息重复——Kafka可…

CentOS挂载:解锁文件系统的力量

目录 引言1 挂载简介2 挂载本地分区3 挂载网络共享文件系统4 使用CIFS挂载结论 引言 在CentOS(一种基于Linux的操作系统)上挂载文件系统是一项常见而重要的任务,无论是将新的磁盘驱动器添加到系统,还是挂载网络共享资源&#xff…

【flutter】使用getx下的GetMaterialApp创建路由和使用时间选择器国际化问题

GetMaterialApp是啥 网上解释说是 MaterialApp Getx properties GetMaterialApp 问题 在使用showDateRangePicker组件的时候, 一直报错 No MaterialLocalizations found 我就愁思是不是GetMaterialApp跟MaterialApp方法不一样的问题,结果不是&#…

城市网吧视频智能监控方案,实现视频远程集中监控

网吧环境较为复杂,电脑设备众多且人员流动性大,极易发生人员或消防事故,亟需改变,TSINGSEE青犀AI智能网吧视频监管方案可以帮助实现对网吧环境和用户活动的实时监控和管理。 1、视频监控系统 在网吧内部布置高清摄像头&#xff0…

【C++入门到精通】右值引用 | 完美转发 C++11 [ C++入门 ]

阅读导航 引言一、左值引用和右值引用1. 什么是左值?什么是左值引用?2. 什么是右值?什么是右值引用?3. move( )函数 二、左值引用与右值引用比较三、右值引用使用场景和意义四、完美转发std::forward 函数完美转发实际中的使用场景…

SSM项目初始化流程与操作概念解释-SpringBoot简化版

文章目录 1.引入概念2.导入依赖3.项目配置4.依照SpringMVC框架构建项目 1.引入概念 例如某一个XX系统,该系统存在前台页面(给用户直观看或使用),和后台页面(给管理人员调整数据和权限)。 这二个页面都通过…

机器学习笔记 - Ocr识别中的文本检测EAST网络概述

一、文本检测 文本检测简单来说就是找到图像中可以出现文本的区域。例如,请参见下图,其中在检测到的文本周围绘制了绿色边框。 在进行文本检测时,你可能会遇到两种情况 具有结构化文本的图像:这是指具有干净/均匀背景和常规字体的图像。文本大多密集,行结构正确,…

uniapp中使用render.js进行openers、arcgis等地图操作

uniapp中使用render.js进行openers、arcgis等地图操作 一、为啥需要render.js render.js主要作用于APP上,因为Uniapp本质为vuejshtml进行开发,整个技术栈还是H5,对DOM元素进行操作。而APP中没用Dom元素这个概念。因此利用render.js这个视图层…

GEM5 Garnet DVFS / NoC DVFS教程:ruby.clk_domain ruby.voltage_domain

简介 gem5中的 NoC部分是Garnet实现的,但是Garnet并没有单独的时钟域,而是保持ruby一致,要做noc的DVFS,便是要改ruby的 改电压 #这里只是生成一个随便变量名,存一下值。改是和频率一起的 userssaved_voltage_domain…

C++二分查找算法:查找和最小的 K 对数字

相关专题 二分查找相关题目 题目 给定两个以 非递减顺序排列 的整数数组 nums1 和 nums2 , 以及一个整数 k 。 定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2 。 请找到和最小的 k 个数对 (u1,v1), (u2,v2) … (uk,vk) 。 示例 1:…

采用Nexus搭建Maven私服

采用Nexus搭建Maven私服 1.采用docker安装 1.创建数据目录挂载的目录: /usr/local/springcloud_1113/nexus3/nexus-data2.查询并拉取镜像docker search nexus3docker pull sonatype/nexus33.查看拉取的镜像docker images4.创建docker容器:可能出现启动…

【数据结构】树与二叉树(十八):树的存储结构——Father链接结构、儿子链表链接结构

文章目录 5.1 树的基本概念5.1.1 树的定义5.1.2 森林的定义5.1.3 树的术语 5.2 二叉树5.3 树5.3.1 树的存储结构1. 理论基础2. 典型实例 5.3.2 Father链接结构a. 定义树节点结构b. 创建新节点c. 主函数d. 代码整合 5.3.3 儿子链表链接结构a. 定义树节点结构b. 创建新节点c. 添加…