037、目标检测-SSD实现

之——简单实现

目录

之——简单实现

杂谈

正文

1.类别预测层

2.边界框预测

3.多尺度输出联结做预测(提高预测效率)

4.多尺度实现

5.基本网络块

6.完整模型


杂谈

        原理查看:037、目标检测-算法速览-CSDN博客


正文

1.类别预测层

         类别预测的实现,锚框类别数num_classes+1背景:

        该图层使用填充为1的3×3的卷积层。此卷积层的输入和输出的宽度和高度保持不变,只是改变了通道数: 

import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2ldef cls_predictor(num_inputs, num_anchors, num_classes):return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),kernel_size=3, padding=1)

2.边界框预测

        把边界框也看做一个预测问题,要预测的值就是两个坐标四个值,所以输出通道为4*num_anchors:

def bbox_predictor(num_inputs, num_anchors):return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)


3.多尺度输出联结做预测(提高预测效率)

        单发多框检测使用多尺度特征图来生成锚框并预测其类别和偏移量。 在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。

def forward(x, block):return block(x)Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape

        通道维包含中心相同的锚框的预测结果。我们首先将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高×宽×通道数)的格式,以方便之后在维度1上的连结 :

def flatten_pred(pred):return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)def concat_preds(preds):return torch.cat([flatten_pred(p) for p in preds], dim=1)

         


4.多尺度实现

        为了在多个尺度下检测目标,我们在下面定义了高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半。

def down_sample_blk(in_channels, out_channels):blk = []for _ in range(2):blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))blk.append(nn.BatchNorm2d(out_channels))blk.append(nn.ReLU())in_channels = out_channelsblk.append(nn.MaxPool2d(2))return nn.Sequential(*blk)

        跟当时VGG的实现极其类似,效果:

forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape


5.基本网络块

        基本网络块用于从输入图像中抽取特征。 为了计算简洁,我们构造了一个小的基础网络,该网络串联3个高和宽减半块,并逐步将通道数翻倍。 给定输入图像的形状为256×256,此基本网络块输出的特征图形状为32×32:

def base_net():blk = []num_filters = [3, 16, 32, 64]for i in range(len(num_filters) - 1):blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))return nn.Sequential(*blk)forward(torch.zeros((2, 3, 256, 256)), base_net()).shape

6.完整模型

        完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池化将高度和宽度都降到1

def get_blk(i):if i == 0:blk = base_net()elif i == 1:blk = down_sample_blk(64, 128)elif i == 4:blk = nn.AdaptiveMaxPool2d((1,1))else:blk = down_sample_blk(128, 128)return blk

        每个块的前向传播:为每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y):

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):Y = blk(X)anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)cls_preds = cls_predictor(Y)bbox_preds = bbox_predictor(Y)return (Y, anchors, cls_preds, bbox_preds)

        一个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,我们通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。

sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],[0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

        汇总:

class TinySSD(nn.Module):def __init__(self, num_classes, **kwargs):super(TinySSD, self).__init__(**kwargs)self.num_classes = num_classesidx_to_in_channels = [64, 128, 128, 128, 128]for i in range(5):# 即赋值语句self.blk_i=get_blk(i)setattr(self, f'blk_{i}', get_blk(i))setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],num_anchors, num_classes))setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],num_anchors))def forward(self, X):anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5for i in range(5):# getattr(self,'blk_%d'%i)即访问self.blk_iX, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))anchors = torch.cat(anchors, dim=1)cls_preds = concat_preds(cls_preds)cls_preds = cls_preds.reshape(cls_preds.shape[0], -1, self.num_classes + 1)bbox_preds = concat_preds(bbox_preds)return anchors, cls_preds, bbox_preds

        训练:

batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)#损失函数和评价函数
cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]cls = cls_loss(cls_preds.reshape(-1, num_classes),cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)bbox = bbox_loss(bbox_preds * bbox_masks,bbox_labels * bbox_masks).mean(dim=1)return cls + bboxdef cls_eval(cls_preds, cls_labels):# 由于类别预测结果放在最后一维,argmax需要指定最后一维。return float((cls_preds.argmax(dim=-1).type(cls_labels.dtype) == cls_labels).sum())def bbox_eval(bbox_preds, bbox_labels, bbox_masks):return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())#训练
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):# 训练精确度的和,训练精确度的和中的示例数# 绝对误差的和,绝对误差的和中的示例数metric = d2l.Accumulator(4)net.train()for features, target in train_iter:timer.start()trainer.zero_grad()X, Y = features.to(device), target.to(device)# 生成多尺度的锚框,为每个锚框预测类别和偏移量anchors, cls_preds, bbox_preds = net(X)# 为每个锚框标注类别和偏移量bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)# 根据类别和偏移量的预测和标注值计算损失函数l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,bbox_masks)l.mean().backward()trainer.step()metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),bbox_eval(bbox_preds, bbox_labels, bbox_masks),bbox_labels.numel())cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on 'f'{str(device)}')

         结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197378.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Newman

近期在复习Postman的基础知识,在小破站上跟着百里老师系统复习了一遍,也做了一些笔记,希望可以给大家一点点启发。 一)如何安装Newman 1、下载并安装NodeJs 在官网下载NodeJs: Download | Node.js(官网的…

具有mDNS功能的串口服务器

1.概述: 通过mDNS协议可以获得设备的ID、mac、IP、port等信息,方便计算机在同一个局域网内连接到具有该服务的模块。支持产品有串口服务器、串口转以太网模块、RS485串口转网口芯片等。 图 1 mDNS网络结构图 当具有mDNS的服务的设备接入网络的时候,首先…

五、Linux目录结构

1.基本介绍 1.Linux的文件系统是采用级层式的树状目录结构,在此结构中的最上层是根目录"r/",然后在此目录下再创建其他的目录。 2.深刻理解linux树状文件目录是非常重要的 3.记住一句经典的话:在Linux世界里,一切皆文件…

酷柚易汛ERP - 序列号盘点操作指南

1、应用场景 将系统中开启序列号的商品数量与与实际存放的数量进行对比。 2、主要操作 2.1 录入序列号 打开【盘点】-【序列号盘点】,新增序列号盘点单,点击【SN】按钮,在弹框中输入序列号。 支持扫描枪录入序列号支持复制粘贴序列号录入…

技巧篇:在Pycharm中配置集成Git

一、在Pycharm中配置集成Git 我们使用git需要先安装git工具,这里给出下载地址,下载后一路直接安装即可: https://git-for-windows.github.io/ 0. git中的一些常用词释义 Repository name: 仓库名称 Description(可选):…

【Android】如何使用模拟器调试安卓项目

1、电脑安装逍遥模拟器,用来跑安卓项目。安装好模拟器之后,直接起安卓项目,自动会在选择设备处显示 2、如果前端是安卓后端是其他语言的话,这种前后端分离的模式,需要监听端口,原因是运行安卓和后端编译器都…

Idea 创建 Spring 项目(保姆级)

描述信息 最近卷起来&#xff0c;系统学习Spring&#xff1b;俗话说&#xff1a;万事开头难&#xff1b;创建一个Spring项目在网上找了好久没有找到好的方式&#xff1b;摸索了半天产出如下文档。 在 Idea 中新建项目 填写信息如下 生成项目目录结构 pom添加依赖 <depende…

Leetcode—剑指Offer LCR 140.训练计划II【简单】

2023每日刷题&#xff08;三十三&#xff09; Leetcode—LCR 140.训练计划II 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* trainingPlan(struct ListNode* head, int cnt) {str…

基于django水果蔬菜生鲜销售系统

基于django水果蔬菜生鲜销售系统 摘要 基于Django的水果蔬菜生鲜销售系统是一种利用Django框架开发的电子商务平台&#xff0c;旨在提供高效、便捷的购物体验&#xff0c;同时支持水果蔬菜生鲜产品的在线销售。该系统整合了用户管理、产品管理、购物车、订单管理等核心功能&…

初始ProtoBuf

目录​​​​​​​ ⼀、初识ProtoBuf 1. 序列化概念 2. ProtoBuf是什么 3. ProtoBuf的使用特点 ⼆、安装ProtoBuf 1、ProtoBuf在window下的安装 2、ProtoBuf在Linux下的安装 ⼀、初识ProtoBuf 1. 序列化概念 序列化和反序列化 序列化&#xff1a;把对象转换为字节序列…

python中列表的基础解释

列表&#xff1a; 一种可以存放多种类型数据的数据结构 列表的创建&#xff1a; 1.用【】创建列表 #创建一个空列表 list1[] #创建一个非空列表 list2 [zhang,li,ying,1,2,3] #输出内容及类型 print(list1,type(list1)) print(list2,type(list2))结果&#xff1a; 2.使用list…

LeetCode【12】整数转罗马数字

题目&#xff1a; 思路&#xff1a; https://blog.csdn.net/m0_71120708/article/details/128769894 代码&#xff1a; public String intToRoman(int num) {String[] thousands new String[] {"", "M", "MM", "MMM"};String[] hun…

Linux在线安装MySQL8.0.24安装、MySQL数据备份和恢复

一、 Linux在线安装MySQL8.0.24 如果机器上已经有MySQL5.7版本需要先卸载 首先&#xff0c;需要停止MySQL服务。可以通过以下命令来停止服务&#xff1a; sudo systemctl stop mysqld接下来&#xff0c;我们需要卸载MySQL5.7。可以通过以下命令来卸载&#xff1a; sudo yum…

2023最新软件测试20个基础面试题及答案

什么是软件测试&#xff1f; 答案&#xff1a;软件测试是指在预定的环境中运行程序&#xff0c;为了发现软件存在的错误、缺陷以及其他不符合要求的行为的过程。 软件测试的目的是什么&#xff1f; 答案&#xff1a;软件测试的主要目的是保证软件的质量&#xff0c;并尽可能大…

Halcon (2):Halcon基础知识

文章目录 文章专栏视频资源Halcon基础知识前言Halcon文档案例学习结论 文章专栏 Halcon开发 视频资源 机器视觉之C#联合Halcon Halcon基础知识 我网上找了些通用的基础知识 Halcon——关于halcon中的一些语法 Halcon常用算子汇总 Halcon基础大全&#xff08;基础算子、高阶算子…

UI自动化测试(弹出框,多窗口)

一、弹出框实战 1、在UI自动化测试中经常会遇到Alert弹出框的场景。Alert类是对话框的处理&#xff0c;主要是对alert警告框。confirm确认框&#xff0c;promp消息对话框。 text():获取alert的文本 dismiss ():点击取消 accept():接受 send-keys():输入 from selenium import …

C++之函数对象

C之函数对象 #include<iostream> using namespace std; #include<string> ///函数对象 (仿函数) //函数对象在使用时&#xff0c;可以像普通函数那样调用&#xff0c;可以有参数&#xff0c;可以有返回值 //函数对象超出普通函数的概念&#xff0c;函数对象可以有自…

portraiture2024ps磨皮插件参数设置教程

ps磨皮插件一般是第三方软件&#xff0c;通过安装的方式放在ps的相关文件夹中。但也有一些插件是放置在系统软件目录的&#xff0c;不与ps文件放在一起。本文会给大家具体介绍以上两种不同的情况&#xff0c;方便大家了解ps磨皮插件放在哪个文件夹&#xff0c;ps的磨皮插件在哪…

HarmonyOS真机调试报错:INSTALL_PARSE_FAILED_USESDK_ERROR处理

文章目录 1、 新建应用时选择与自己真机匹配的sdk版本2、 根据报错提示连接打开处理方案3、查询真机版本对应的**compileSdkVersion** 和 **compatibleSdkVersion** 提示3.1版本之后和3.1版本之前的不同命令&#xff08;此处为3.0版本&#xff09;4、根据查询修改参数5、连接成…

五、hdfs常见权限问题

1、常见问题 2、案例 &#xff08;1&#xff09;问题 &#xff08;2&#xff09;hdfs的超级管理员 &#xff08;3&#xff09;原因 没有使用Hadoop用户对hdfs文件系统进行操作。 在Hadoop文件系统中&#xff0c;Hadoop用户相当于Linux系统中的root用户&#xff0c;是最高级别用…