SDUT OJ《算法分析与设计》搜索算法

A - 子集和问题

Description

子集和问题的一个实例为〈S,t〉。其中,S={  x1 , x2 ,…,xn }是一个正整数的集合,c是一个正整数。子集和问题判定是否存在S的一个子集S1,使得:
 


试设计一个解子集和问题的回溯法。
对于给定的正整数的集合S={  x1 , x2 ,…,xn }和正整数c,计算S 的一个子集S1,使得:
 

Input

输入数据的第1 行有2 个正整数n 和c(n≤10000,c≤10000000),n 表示S 的大小,c是子集和的目标值。接下来的1 行中,有n个正整数,表示集合S中的元素。

Output

将子集和问题的解输出。当问题无解时,输出“No Solution!”。

Samples

Sample #1
Input 
Output 
5 10
2 2 6 5 4
2 2 6
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10;
int a[N];
int ans[N] = {0};
int n, c, sum;
bool flag = 0;
void print(int len){for(int i = 0; i < len; i++){if(i == len - 1){cout << ans[i] << "\n";}else{cout << ans[i] << ' ';}}
}
void Search(int x, int sum, int len){if(sum > c || flag) return ;if(sum == c){print(len);flag = 1;return ;}for(int i = x; i < n; i++){if(a[i] + sum <= c){ans[len] = a[i];Search(i+1, sum+a[i], len+1);}}
}
int main()
{sum = 0;cin >> n >> c;for(int i = 0; i < n; i++){cin >> a[i];sum += a[i];}if(sum < c){cout << "No Solution!" << "\n";}else{Search(0, 0, 0);if(!flag){cout << "No Solution!" << "\n";}}return 0;
}

B - 运动员最佳匹配问题

Description

羽毛球队有男女运动员各n 人。给定2 个n×n 矩阵P 和Q。P[i][j]是男运动员i 和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。
设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
设计一个算法,对于给定的男女运动员竞赛优势,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。

Input

输入数据的第一行有1 个正整数n (1≤n≤20)。接下来的2n 行,每行n个数。前n行是p,后n行是q。

Output

将计算出的男女双方竞赛优势的总和的最大值输出。

Samples

Sample #1
Input 
Output 
3
10 2 3
2 3 4
3 4 5
2 2 2
3 5 3
4 5 1
52
#include<bits/stdc++.h>
using namespace std;
const int N = 22;
int n, a[N][N], b[N][N], vis[N], pre[N], sum; 
void dfs(int i, int cnt){if(i > n && cnt + pre[n] - pre[i-1] > sum){sum = max(sum, cnt);return ;}if(cnt + pre[n] - pre[i-1] > sum){for(int j = 1; j <= n; j++){if(vis[j] == 0){vis[j] = 1;dfs(i + 1, cnt + a[i][j] * b[j][i]);vis[j] = 0;}}}
}
int main()
{cin >> n;for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){cin >> a[i][j];}}for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){cin >> b[i][j];}}for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){pre[i] = max(pre[i], a[i][j] * b[j][i]);}pre[i] += pre[i-1];}dfs(1, 0);cout << sum << "\n";return 0;
}

C - 工作分配问题

Description

设有n件工作分配给n个人。将工作i分配给第j个人所需的费用为 cij。试设计一个算法,为每一个人都分配1 件不同的工作,并使总费用达到最小。

设计一个算法,对于给定的工作费用,计算最佳工作分配方案,使总费用达到最小。

Input

输入数据的第一行有1 个正整数n (1≤n≤11)。接下来的n行,每行n个数,表示工作费用。

Output

将计算出的最小总费用输出。

Samples

Sample #1
Input 
Output 
3
10 2 3
2 3 4
3 4 5
9
#include<bits/stdc++.h>
using namespace std;
const int N = 25;
const int INF = 0x3f3f3f3f;
int n, ans;
int a[N][N], vis[N];
void dfs(int i, int sum){if(sum > ans) return ;if(i == n + 1 && sum < ans){ans = sum;return ;}for(int j = 1; j <= n; j++){if(!vis[j]){vis[j] = 1;dfs(i + 1, sum + a[i][j]);vis[j] = 0;}}
}
int main()
{cin >> n;for(int i = 1; i <= n; i++){for(int j = 1; j <= n; j++){cin >> a[i][j];}}ans = INF;dfs(1, 0);cout << ans << "\n";return 0;
}

D - 整数变换问题

Description

整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;


试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。

Input

输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。

Output

将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。

Samples

Sample #1
Input 
Output 
15 4
4
gfgg
#include<bits/stdc++.h>
using namespace std;
int maxn, n, m;
char f[101];
int search(int step, int sum){if(step > maxn) return 0;if(m == sum * 3 || search(step + 1, sum * 3)){f[step] = 'f';return 1;}if(sum / 2 == m || search(step+1, sum/2)){f[step] = 'g';return 1;}return 0;
}
int main()
{cin >> n >> m;maxn = 1;while(!search(1, n)){maxn ++;}cout << maxn << "\n";for(int i = maxn; i >= 1; i--){cout << f[i];}cout << "\n";return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197888.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB与Excel的数据交互

准备阶段 clear all % 添加Excel函数 try Excel=actxGetRunningServer(Excel.Application); catch Excel=actxserver(Excel.application); end % 设置Excel可见 Excel.visible=1; 插入数据 % % 激活eSheet1 % eSheet1.Activate; % 或者 % Activate(eSheet1); % % 打开…

23.11.19日总结

经过昨天的中期答辩&#xff0c;其实可以看出来项目进度太慢了&#xff0c;现在是第十周&#xff0c;预计第十四周是终级答辩&#xff0c;在这段时间要把项目写完。 前端要加上一个未登录的拦截器&#xff0c;后端加上全局的异常处理。对于饿了么项目的商品建表&#xff0c;之前…

C语言:动态内存管理

目录 为什么存在动态内存分配 动态内存函数 malloc和free 示例 calloc 示例 realloc 示例 常见的动态内存错误 对NULL指针的解引用操作 对动态开辟的空间进行越界访问 对于非动态开辟内存使用free释放 使用free释放一块动态开辟内存的一部分 对同一块内存多次释…

fopen/fwrite/fread 对UNICODE字符写入的总结

windows对fopen函数进行了升级&#xff0c;可以支持指定文件的编码格式&#xff08;ccs参数指定&#xff09;。 例如&#xff1a; FILE *fp fopen("newfile.txt", "rt, ccsUTF-8"); 当以 ccs 模式打开文件时&#xff0c;进行读写操作的数据应为 UTF-16…

【SpringBoot3+Vue3】三【实战篇】-后端(优化)

目录 一、登录优化-redis 1、SpringBoot集成redis 1.1 pom 1.2 yml 1.3 测试程序&#xff08;非必须&#xff09; 1.4 启动redis&#xff0c;执行测试程序 2、令牌主动失效&#xff08;代码优化&#xff09; 2.1 UserController设置token到redis 2.2 登录拦截器Log…

mysql练习1

-- 1.查询出部门编号为BM01的所有员工 SELECT* FROMemp e WHEREe.deptno BM01; -- 2.所有销售人员的姓名、编号和部门编号。 SELECTe.empname,e.empno,e.deptno FROMemp e WHEREe.empstation "销售人员";-- 3.找出奖金高于工资的员工。 SELECT* FROMemp2 WHE…

FPGA设计时序约束八、others类约束之Set_Case_Analysis

目录 一、序言 二、Set Case Analysis 2.1 基本概念 2.2 设置界面 2.3 命令语法 2.4 命令示例 三、工程示例 四、参考资料 一、序言 在Vivado的时序约束窗口中&#xff0c;存在一类特殊的约束&#xff0c;划分在others目录下&#xff0c;可用于设置忽略或修改默认的时序…

综述:目标检测二十年(机翻版)(未完

原文地址 20年来的目标检测&#xff1a;一项调查 摘要关键词一 介绍二 目标检测二十年A.一个目标检测的路线图1)里程碑&#xff1a;传统探测器Viola Jones探测器HOG检测器基于可变形零件的模型&#xff08;DPM&#xff09; 2)里程碑&#xff1a;基于CNN的两阶段探测器RCNNSPPN…

Matlab绘制双坐标轴图示例函数yyaxis

一、前言 出于一些需求&#xff0c;我们需要将两个不同属性的参量绘制在同一张图上&#xff0c;但是两个参量属性不同&#xff0c;即单位不同&#xff0c;纵坐标值分布范围不同&#xff0c;此刻&#xff0c;我们只需要将一个参量的值在y轴左侧展示&#xff0c;另一个参量的值在…

centos7安装mongodb

1、下载mongodb https://www.mongodb.com/try/download/community 2、解压 3、重命名 4、创建mongodb的data、logs目录 5、启动mongodb, bin/mongod --port27017 --dbpath/data/program/mongodb/data --logpath/data/program/mongodb/logs/mongodb.log --bind_ip0.0.0.0 --f…

实用篇-ES-DSL查询文档

数据的存储不是目的&#xff0c;我们希望从海量的酒店数据中检索出需要的信息&#xff0c;这就是ES的搜索功能 官方文档: https://elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html#query-dsl。DSL是用来查询文档的 Elasticsearch提供了基于JSON的DSL来定…

算法通关村——数字中的统计、溢出、进制转换处理模板

数字与数学基础问题 1、数字统计 1.1、符号统计 LeetCode1822. 给定一个数组&#xff0c;求所有元素的乘积的符号&#xff0c;如果最终答案是负的返回-1&#xff0c;如果最终答案是正的返回1&#xff0c;如果答案是0返回0. 这题其实只用看数组中0和负数的个数就好了&#x…

力扣刷题篇之位运算

系列文章目录 目录 系列文章目录 前言 一、位运算的基本运算 二、位运算的技巧 三、布隆过滤器 总结 前言 本系列是个人力扣刷题汇总&#xff0c;本文是数与位。刷题顺序按照[力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 - 力扣&#xff08;LeetCode&#xff0…

DeepMind发布新模型Mirasol3B:更高效处理音频、视频数据

Google DeepMind日前悄然宣布了其人工智能研究的重大进展&#xff0c;推出了一款名为“Mirasol3B”的新型自回归模型&#xff0c;旨在提升对长视频输入的理解能力。该新模型展示了一种颠覆性的多模态学习方法&#xff0c;以更综合和高效的方式处理音频、视频和文本数据。 Googl…

基于STC12C5A60S2系列1T 8051单片机的SPI总线器件数模芯片TLC5615实现数模转换应用

基于STC12C5A60S2系列1T 8051单片的SPI总线器件数模芯片TLC5615实现数模转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍SPI总线器件数模芯片TLC5615介绍通过按…

神辅助 Cursor 编辑器,加入 GPT-4 让编码更轻松!

分类 互联网 在 ChatGPT 问世之前&#xff0c;我们的编码方式很多时候都是面向搜索引擎编码&#xff0c;需要不断地进行搜索&#xff0c;然后复制粘贴&#xff0c;俗称复制粘贴工程师。 但是&#xff0c;随着ChatGPT的出现&#xff0c;这一切将彻底改变。 ChatGPT 是一种基于…

nacos网关

目录 拉取docker镜像 环境配置 网关搭建架构 wemedia-gateway网关配置 依赖 启动类配置 网关yml配置 nacos配置中心配置网关 wdmedia服务配置 依赖 启动类配置 yml配置 nacos配置 nacos中的配置共享 nacos配置 wmedia模块中yml的配置 参考:https://blog.csdn.net/…

Node.js 安装配置

文章目录 安装检测Node是否可用 安装 首先我们需要从官网下载Node安装包:Node.Js中文网,下载后双击安装没有什么特殊的地方&#xff0c;安装路径默认是C盘&#xff0c;不想安装C盘的话可以选择一下其他的盘符。安装完成以后可以不用配置环境变量&#xff0c;Node安装已经自动给…

【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.AVL树的概念二.AVL树节点的定义(代码…

MIB 6.S081 System calls(1)using gdb

难度:easy In many cases, print statements will be sufficient to debug your kernel, but sometimes being able to single step through some assembly code or inspecting the variables on the stack is helpful. To learn more about how to run GDB and the common iss…