python-opencv 培训课程作业

python-opencv 培训课程作业

作业一:
第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示

第二步:彩图 -> 灰度图
第三步:反转图像:最大图像灰度值减去原图像,即可得到反转的图像

第四步:用 plt 对比展示原图、灰度图、反转图 plt.subplot()

import os
import cv2
import  matplotlib.pyplot as plt
import numpy as np
#默认加载彩图
path=r'flower.jpg'# imread(path,way)
#way=0 灰度图。way=1 彩图
#默认彩图#cv2.COLOR_BGR2GRAY#cv2.COLOR_BGR2RGB
#cv2.COLOR_BGR2HSV,HSV-色调、饱和度、亮度def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()
# 第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示
img=cv2.imread(path)cv_show('flower',img)# 彩图 -> 灰度图
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# 反转图像:最大图像灰度值减去原图像,即可得到反转的图像max_gray_value=img_gray.max()
print(max_gray_value)covert_img=max_gray_value-img# 用 plt 对比展示原图、灰度图、反转图 plt.subplot()plt.subplot(131)
img = img[:,:, ::-1]
plt.imshow(img)plt.title('original')plt.subplot(132)
plt.imshow(img_gray,'gray')
plt.title('img_gray')
plt.subplot(133)
covert_img=covert_img[:,:, ::-1]
plt.imshow(covert_img)
plt.title('covert_img')plt.show()

作业二:
第一步:第一步:读取 res 下面的 girl.jpg,读取彩图,,并转换为rbg格式展示

第二步:灰度化处理,并展示
第三步:灰度图二值化处理,像素值大于50,设置为255,小于50,设置为0
第四步:伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果
第五步:对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果

代码如下:

import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npmpl.rcParams["font.sans-serif"] = ["SimHei"]  # 指定默认字体 SimHei 黑体# 读入原始图像 res/girl.jpg,并用展示 rgb
path=r'girl.jpg'def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()
# 第一步:读取 res 下面的 girl.jpg,读取彩图,并转换为rbg格式展示
img=cv2.imread(path)img_rgb=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)cv_show('original',img)
cv_show('girl_rgb',img_rgb)
#cv_show('girl_rgb',img)
# 灰度化处理,并展示
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)cv_show('girl_gray',img_gray)
# 二值化处理# gray是灰度图,像素值大于50,设置为255,小于50,设置为0ret,dst1=cv2.threshold(img_gray,50,255,cv2.THRESH_BINARY)
cv_show('girl_gray_binary',dst1)# 伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果
rows = img.shape[0]  # rows、cols 行列数,rows 也就是高度
cols = img.shape[1]# 设定伽马值
gamma = 0.8# 对图像进行伽马变换
gamma_correction = np.power(img_gray / 255.0, gamma)
gamma_correction = (gamma_correction * 255).astype(np.uint8)
cv_show('girl_gamma_correctiony',gamma_correction)# 对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果
for i in range(rows):for j in range(cols):img_gray[i][j]= 3 * math.log(1 + img_gray[i][j])#   print(img_gray[i][j])cv_show('log_img',img_gray)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197921.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023.11.18 - hadoop之zookeeper分布式协调服务

1.zookeeper简介 ZooKeeper概念: Zookeeper是一个分布式协调服务的开源框架。本质上是一个分布式的小文件存储系统 ZooKeeper作用: 主要用来解决分布式集群中应用系统的一致性问题。 ZooKeeper结构: 采用树形层次结构,没有目录与文件之分,ZooKeeper树中的每个节点被…

linux文件IO

文件IO截断 截断对文件的偏移量没有影响。

Sqlite安装配置及使用

一、下载SQLite Sqlite官网 我下载的是3370000版本:sqlite-dll-win64-x64-3370000.zip 和 sqlite-tools-win32-x86-3370000.zip 二、解压下载的两个压缩包 三、配置环境 四、检查是否安装配置成功 winR:输入cmd调出命令窗口,输入sqlite3后回车查看s…

2023-11-17 VsCode使用makefile进行多文件编译

点击 <C 语言编程核心突破> 快速C语言入门 VsCode使用makefile进行多文件编译 前言一、一个简单的多文件示例二、makefile基本语法三、VsCode使用makefile总结 前言 要解决问题: C或C可以多文件编译, 意味着需要进行代码组织, 为了方便多文件编译, gnu开发了make工具, …

mac苹果笔记本应用程序在哪?有什么快捷方式吗?

苹果笔记本电脑一直以来都被广泛使用&#xff0c;而苹果的操作系统 macOS 也非常受欢迎。一台好的笔记本电脑不仅仅依赖于硬件配置&#xff0c;还需要丰富多样的应用程序来满足用户的需求。苹果笔记本应用程序在哪&#xff0c;不少mac新手用户会有这个疑问。在这篇文章中&#…

PMCW体制雷达系列文章(4) – PMCW雷达之抗干扰

说明 本文作为PMCW体制雷达系列文章之一&#xff0c;主要聊聊FMCW&PMCW两种体制雷达的干扰问题。事实上不管是通信领域还是雷达领域&#xff0c;对于一切以电磁波作为媒介的信息传递活动&#xff0c;干扰是无处不在的。近年来&#xff0c;随着雷达装车率的提高&#xff0c;…

python科研绘图:面积图

目录 1、面积图 2、堆积面积图 1、面积图 面积图是一种数据可视化图表&#xff0c;用于展示数据随时间或其他有序类别的变化趋势。它与折线图相似&#xff0c;但在展示数据变化的同时&#xff0c;面积图还强调了各个数据点之间的累积关系。这种图表通常通过在折线下方填充颜…

HarmonyOS开发:动态共享包的依赖问题

一、共享包的依赖方式 在需要依赖的模块包目录下oh-package.json5文件中添加依赖&#xff1a; "dependencies": {"ohos/srpaasUI": "file:../../srpaasUI","ohos/srbusiness": "file:../../feature/srbusiness"} 引入之后…

测试开发环境下centos7.9下安装docker的minio

按照以下方法进行 1、安装docker&#xff0c;要是生产等还是要安装docker-ce yum install docker 2、启动docker service docker start 3、 查看docker信息 docker info 4、加到启动里 systemctl enable docker.service 5、开始docker pull minio/minio 但报错&#x…

sqli-labs关卡19(基于http头部报错盲注)通关思路

文章目录 前言一、回顾上一关知识点二、靶场第十九关通关思路1、判断注入点2、爆数据库名3、爆数据库表4、爆数据库列5、爆数据库关键信息 总结 前言 此文章只用于学习和反思巩固sql注入知识&#xff0c;禁止用于做非法攻击。注意靶场是可以练习的平台&#xff0c;不能随意去尚…

《QT从基础到进阶·三十一》事件循环QCoreApplication,QGuiApplication,QApplication

QCoreApplication&#xff1a;为非界面类项目提供一个事件监听循环。 QGuiApplication&#xff1a;以QtGui模块基础开发的界面项目需要应用环境。 QApplication&#xff1a;以QWidget模块基础开发的界面项目需要应用环境。 可以简单总结为&#xff0c;如果是非界面项目开发&am…

SPASS-聚类和判别分析

聚类与判别分析概述 基本概念 聚类分析 聚类分析的基本思想是找出一些能够度量样本或指标之间相似程度的统计量&#xff0c;以这些统计量为划分类型的依据&#xff0c;把一些相似程度较大的样本&#xff08;或指标&#xff09;聚合为一类&#xff0c;把另外一些彼此之间相似程…

【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder

论文&#xff1a;Segment Anything   代码&#xff1a;https://github.com/facebookresearch/segment-anything 系列篇&#xff1a;   &#xff08;1&#xff09;【技术追踪】SAM&#xff08;Segment Anything Model&#xff09;代码解析与结构绘制之Image Encoder   &am…

C++ Qt 学习(八):Qt 绘图技术与图形视图

1. 常见 18 种 Qt 绘图技术 1.1 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <memory> #include <QTreeView> #include "CPaintWidget.h"using namespace std;class Widget : public QWidget {Q_OBJECTpublic:Widget…

Dart笔记:glob 文件系统遍历

Dart笔记 文件系统遍历工具&#xff1a;glob 模块 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/13442…

第7天:信息打点-资产泄漏amp;CMS识别amp;Git监控amp;SVNamp;DS_Storeamp;备份

第7天&#xff1a;信息打点-资产泄漏&CMS识别&Git监控&SVN&DS_Store&备份 知识点&#xff1a; 一、cms指纹识别获取方式 网上开源的程序&#xff0c;得到名字就可以搜索直接获取到源码。 cms在线识别&#xff1a; CMS识别&#xff1a;https://www.yun…

基于单片机C51全自动洗衣机仿真设计

**单片机设计介绍&#xff0c; 基于单片机C51全自动洗衣机仿真设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机C51的全自动洗衣机仿真设计是一个复杂的项目&#xff0c;它涉及到硬件和软件的设计和实现。以下是对这…

SDUT OJ《算法分析与设计》搜索算法

A - 子集和问题 Description 子集和问题的一个实例为〈S,t〉。其中&#xff0c;S{ x1 &#xff0c; x2 &#xff0c;…&#xff0c;xn }是一个正整数的集合&#xff0c;c是一个正整数。子集和问题判定是否存在S的一个子集S1&#xff0c;使得&#xff1a; 。 试设计一个解子…

MATLAB与Excel的数据交互

准备阶段 clear all % 添加Excel函数 try Excel=actxGetRunningServer(Excel.Application); catch Excel=actxserver(Excel.application); end % 设置Excel可见 Excel.visible=1; 插入数据 % % 激活eSheet1 % eSheet1.Activate; % 或者 % Activate(eSheet1); % % 打开…

23.11.19日总结

经过昨天的中期答辩&#xff0c;其实可以看出来项目进度太慢了&#xff0c;现在是第十周&#xff0c;预计第十四周是终级答辩&#xff0c;在这段时间要把项目写完。 前端要加上一个未登录的拦截器&#xff0c;后端加上全局的异常处理。对于饿了么项目的商品建表&#xff0c;之前…