【Linux】详谈 进程控制

目录

一、进程是什么

二、task_struct

三、查看进程

四、创建进程

4.1 fork函数的认识

4.2 2. fork函数的返回值

五、进程终止

5.1. 进程退出的场景

5.2. 进程常见的退出方法

5.2.1 从main返回

5.2.1.1 错误码

 5.2.2 exit函数

5.2.3 _exit函数

5.2.4 缓冲区问题补充(为什么_exit不刷新缓冲区)

六、进程等待

6.1. wait和waitpid等待回收子进程 

6.2 阻塞与非阻塞


Linux专栏:传送门!

一、进程是什么

在操作系统中,进程是资源分配和独立运行的基本单位。它是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。单纯的只看一个定义很难理解什么是进程

我们磁盘中的可执行程序,CPU要想拿到并且执行,代码和数据要先放在内存中。操作系统是一个软件在内存中,当磁盘中的可执行程序被内存拿到,可执行程序的代码和数据会被内存拿到,内存中的操作系统会对代码和数据进行描述然后组织为数据结构(先组织在描述)形成内核数据结构对象,对进程的管理就变成了对数据结构对象的增删查改。 内核数据结构对象可以称为PCB,也叫做进程控制块。

内核数据结构对象通过指针指向本身的代码和数据也指向下一个结构体,进而形成真正的进程。进程=内核数据结构对象+自己的代码和数据。 这个数据结构就是进程列表。CPU对进程列表进行调度

二、task_struct

在Linux中描述进程的结构体叫做task_struct。
task_struct是Linux内核的⼀种数据结构,它会被装载到RAM(内存)里并且包含着进程的信息。

  • 标示符: 描述本进程的唯一标示符,用来区别其他进程。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器: 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
  • 上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
  • I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
  • 其他信息

三、查看进程

进程的信息可以通过/proc 系统文件夹查看
如:要获取PID为1的进程信息,你需要查看/proc/1 这个文件夹。

大多数进程信息同样可以使用top和ps这些用户级工具来获取

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{while(1){sleep(1);}return 0;
}

通过系统调用获取进程标示符

• 进程id(PID)
• 父进程id(PPID)

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{printf("pid: %d\n", getpid());printf("ppid: %d\n", getppid());return 0;
}

四、创建进程

4.1 fork函数的认识

在linux中fork函数非常重要, 它从已存在的进程中创建一个新的进程, 新进程为子进程,而原进程为父进程。

#include<unistd.h>
pid_t fork(void);
返回值:子进程中返回0, 父进程中返回子进程id, 出现错误则返回-1

进程调用fork,当控制转移到内核中的fork代码后, 内核会做下面几件事情:

  1. 分配新的内存块和内核数据结构给子进程
  2. 将父进程部分数据结构内容拷贝至子进程
  3. 添加子进程到系统进程列表中
  4. fork返回, 开始调度器调度

当一个进程调用fork()之后,就有两个二进制代码相同的进程。而且他们都运行到相同的地方。但每个进程都将可以开始他们自己的旅程。

这里我们看到了三行输出, 一行before, 两行after,父进程先打印before消息,然后它又打印after,另一个after消息有子进程打印的,但是子进程没有打印before,为什么呢?

所以, fork()之前父进程独立执行,fork()之后,父子两个执行流分别执行,注意,fork之后,谁先执行由调度器决定。

4.2 2. fork函数的返回值

子进程返回0,父进程返回的是子进程的pid。

父进程与子进程是一对多的关系,父进程:子进程=1:N。对于子进程来说它只有一个父进程,对于父进程来说他有多个父进程。为了管理这些进程,所有父进程返回子进程的PID具有唯一性。子进程要想找到父进程肯定更方便。

为什么有两个返回值, 因为fork之后是两个不同的进程, 而返回值也是给不同的进程。

#include <stdio.h>  
#include <stdlib.h>  
#include <unistd.h>  int main() {  pid_t pid = fork();  // 执行 fork()  if (pid < 0) {       // 处理 fork 失败的情况  perror("fork failed");  exit(EXIT_FAILURE);  } else if (pid == 0) { // 子进程执行  printf("This is the child process (PID: %d)\n", getpid());  } else {              // 父进程执行  printf("This is the parent process (PID: %d, Child PID: %d)\n", getpid(), pid);  }  return 0;            // 所有进程执行完毕  
}

执行fork函数,会为子进程创建一个和父进程一样的PCB。但是他们所指向的代码都是一样的,所以他们的代码共享。也就是说父进程和子进程共享代码中return,都执行return。

五、进程终止

本质:释放系统资源, 就是释放进程申请的相关内核数据结构和对应的代码和数据。

5.1. 进程退出的场景

  • 代码运行完毕, 结果正确
  • 代码运行完毕,结果不正确
  • 代码异常终止

5.2. 进程常见的退出方法

5.2.1 从main返回

除了main函数的返回值表示进程结束,其它函数的return都表示函数结束。

5.2.1.1 错误码

main函数的返回值是返回给父进程或者系统的,命令行中获取最近一个进程的返回值我们可以使用echo $?来获取

对于返回值,0表示成功, 非0表示错误,为什么会失败呢?系统提供了不同的错误码信息记录了错误的原因, 也可以自己约定错误码。

那么什么是错误码呢?

举个栗子:

如果想要查看错误码, 我们可以使用errno函数, 使用man可以查看命令详情。

man 3 errno

如果想知道具体的错误内容, 可以使用strerror函数,参数传递错误码。

man 3 strerror

 5.2.2 exit函数

在代码的任何地方, 让进程直接结束。参数就是返回的错误码。

如果使用exit, 如果缓冲区有数据, 则会被刷新出来。

5.2.3 _exit函数

是系统层的进程终止调用

如果使用_exit, 缓冲区的数据则不会被刷新出来。

5.2.4 缓冲区问题补充(为什么_exit不刷新缓冲区)

exit属于是语言级别的,在三号手册, 而_exit是系统级别的,在二号手册。

_exit本质上是系统调用

所以我们上面的_exit实际上是绕过了语言层, 直接进行了系统调用, 而刚刚的缓冲区是语言级别的, fflush也是语言级别的。

六、进程等待

首先我们可以查看一下fork的返回值, 如果fork失败, 则错误码会被设置。

6.1. wait和waitpid等待回收子进程 

一般而言, 父进程创建的子进程, 父进程就要等待子进程进行回收, 如果子进程一直不退出, 则父进程就会阻塞在wait内部。

wait的作用,等待任意的子进程(参数可以传nullptr表示不获取status)

常用:
waitpid的作用:第一个参数 pid>0表示等待指定的一个进程,pid == -1表示等待任意一个子进程

看一下他们的返回值, 如果等待成功则返回对应的子进程,如果等待失败则返回-1.

举个栗子

等待任何一个子进程

当然, 我也可以修改id的参数,比如更换为刚刚子进程id,这里就不展示了。

waitpid的第二个参数,它会帮助父进程获取子进程的退出信息,通过参数的方式给我们带出来。输出型参数

但是这里的退出信息却是256,为什么不是1呢?

其实,status这个参数包含的信息并不只是退出码,它的本质是一个位图, 它的结构中前八位是退出状态,有256种状态 ,低七位是终止信号, 还有一个标志位。

如果想要提取退出状态则需要进行位运算,如下

小问题: 那我们可不可以不使用status来获取状态码,而是用一个全局变量呢?

不可以, 因为进程具有独立性,子进程修改父进程看不到,会发生写时拷贝。

6.2 阻塞与非阻塞

waitpid的第三个参数就是关于阻塞等待与非阻塞等待

首先waitpid的返回值, 如果>0表示,返回目标进程pid, 如果 == 0, 等待成功,但是子进程没有退出, <0 等待失败.

参数如果传0表示阻塞等待, 如果传WNOHANG表示非阻塞等待

举个栗子:

总结

进程控制是操作系统中的一个重要主题,主要涉及如何管理和调度进程以确保计算机系统的高效运行!


本篇完,下篇见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/19800.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音视频入门基础:RTP专题(9)——FFmpeg接收RTP流的原理和内部实现

一、引言 由《音视频入门基础&#xff1a;RTP专题&#xff08;2&#xff09;——使用FFmpeg命令生成RTP流》可以知道&#xff0c;推流端通过下面FFmpeg命令可以将一个媒体文件转推RTP&#xff0c;生成RTP流&#xff1a; ffmpeg -re -stream_loop -1 -i input.mp4 -vcodec cop…

大模型Deepseek的使用_基于阿里云百炼和Chatbox

目录 前言1. 云服务商2. ChatBox参考 前言 上篇博文中探索了&#xff08;本地&#xff09;部署大语言模型&#xff0c;适合微调、数据高隐私性等场景。随着Deepseek-R1的发布&#xff0c;大语言模型的可及性得到极大提升&#xff0c;应用场景不断增加&#xff0c;对高可用的方…

zookeeper watch

目录 回顾回调&观察者模式&发布订阅模式Zookeeper 客户端/ 服务端 watchgetChildren 为例最后归纳 回顾回调&观察者模式&发布订阅模式 回调的思想 类A的a()方法调用类B的b()方法类B的b()方法执行完毕主动调用类A的callback()方法 回调分为同步回调和异步回调…

PAT乙组(1016 部分A+B 1017 A除以B)C语言超详细

文章目录 1016 部分AB1017 A除以B 1016 部分AB 输入样例 1&#xff1a; 3862767 6 13530293 3输出样例 1&#xff1a; 399输入样例 2&#xff1a; 3862767 1 13530293 8输出样例 2&#xff1a; 0代码长度限制 16 KB 时间限制 150 ms 内存限制 64 MB 栈限制 8192 KB 思路解析…

论文笔记:Multi-Head Mixture-of-Experts

2024 neurips 1 背景 稀疏混合专家&#xff08;SMoE&#xff09;可在不显著增加训练和推理成本的前提下提升模型的能力【比如Mixtral 8*7B&#xff0c;表现可以媲美LLaMA-2 70B】 但它也有两个问题 专家激活率低&#xff08;下图左&#xff09; 在优化时只有一小部分专家会被…

【Azure 架构师学习笔记】- Azure Databricks (11) -- UC搭建

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (10) – UC 使用 前言 由于ADB 的更新速度很快&#xff0c;在几个月之后重新搭建ADB 时发现UC 已经更新了很多&#xff0c;为了后续做ADB 的功…

解锁养生秘籍,拥抱健康生活

在这个快节奏的时代&#xff0c;人们行色匆匆&#xff0c;常常在忙碌中忽略了健康。其实&#xff0c;养生并非遥不可及&#xff0c;它就藏在生活的细微之处&#xff0c;等待我们去发现和实践。 规律作息是健康的基础。日出而作&#xff0c;日落而息&#xff0c;顺应自然规律&am…

动手学Agent——Day2

文章目录 一、用 Llama-index 创建 Agent1. 测试模型2. 自定义一个接口类3. 使用 ReActAgent & FunctionTool 构建 Agent 二、数据库对话 Agent1. SQLite 数据库1.1 创建数据库 & 连接1.2 创建、插入、查询、更新、删除数据1.3 关闭连接建立数据库 2. ollama3. 配置对话…

最新国内 ChatGPT Plus/Pro 获取教程

最后更新版本&#xff1a;20250202 教程介绍&#xff1a; 本文将详细介绍如何快速获取一张虚拟信用卡&#xff0c;并通过该卡来获取ChatGPT Plus和ChatGPT Pro。 # 教程全程约15分钟开通ChatGPT Plus会员帐号前准备工作 一个尚未升级的ChatGPT帐号&#xff01;一张虚拟信用卡…

Redis哈希槽机制的实现

Redis哈希槽机制的实现 Redis集群使用哈希槽&#xff08;Hash Slot&#xff09;来管理数据分布&#xff0c;整个集群被划分为固定的16384个哈希槽。当我们在集群中存储一个键时&#xff0c;Redis会先对键进行哈希运算&#xff0c;得到一个哈希值。然后&#xff0c;Redis将该哈…

下载安装运行测试开源vision-language-action(VLA)模型OpenVLA

1. 安装 项目官网OpenVLA 首先按照官网提示的以下代码&#xff0c;执行创建环境->安装最小依赖->git克隆项目等 # Create and activate conda environment conda create -n openvla python3.10 -y conda activate openvla# Install PyTorch. Below is a sample comma…

外贸跨境订货系统流程设计、功能列表及源码输出

在全球化的商业环境下&#xff0c;外贸跨境订货系统对于企业拓展国际市场、提升运营效率至关重要。该系统旨在为外贸企业提供一个便捷、高效、安全的订货平台&#xff0c;实现商品展示、订单管理、物流跟踪等功能&#xff0c;满足跨境业务的多样化需求。以下将详细阐述外贸订货…

排序算法复习——包括插入排序、希尔排序、冒泡排序、快排(包括霍尔法、挖坑法、快慢指针法)、堆排、选择排序、归并排序等 (代码采用c/c++混编)

1.插入排序 插入排序就像我们打斗地主的时候&#xff0c;有一大把牌我们来不及理&#xff0c;就会一张一张的拿然后把拿到的牌放到合适的位置。 对于插入排序我们可以将待排序的数组理解为那一堆没有整理的牌&#xff0c;将排序好的部分理解为手上的牌&#xff0c;对于第i张牌我…

RocketMQ 5.0安装部署

0.前言 在微服务架构逐渐成为主流的今天&#xff0c;消息队列如同数字世界的快递员&#xff0c;承担着系统间高效通信的重要使命。 Apache RocketMQ 自诞生以来&#xff0c;因其架构简单、业务功能丰富、具备极强可扩展性等特点被众多企业开发者以及云厂商广泛采用。历经十余…

Jetson Agx Orin平台preferred_stride调试记录--1924x720图像异常

1.问题描述 硬件: AGX Orin 在Jetpack 5.0.1和Jetpack 5.0.2上测试验证 图像分辨率在1920x720和1024x1920下图像采集正常 但是当采集图像分辨率为1924x720视频时,图像输出异常 像素格式:yuv_uyvy16 gstreamer命令如下 gst-launch-1.0 v4l2src device=/dev/video0 ! …

【玩转全栈】----Django模板语法、请求与响应

目录 一、引言 二、模板语法 三、传参 1、视图函数到模板文件 2、模板文件到视图函数 四、引入静态文件 五、请求与响应 ?1、请求 2、响应 六、综合小案例 1、源码展示 2、注意事项以及部分解释 3、展示 一、引言 像之前那个页面&#xff0c;太过简陋&#xff0c;而且一个完整…

#渗透测试#批量漏洞挖掘#CyberPanel面板远程命令执行漏洞(CVE-2024-51567)

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 一、漏洞特征与影响 二、修复方案与技术细…

C++多态

目录 多态的概念多态的定义及实现协变析构函数的重写通过一段代码理解多态C11 final 和 override重载、覆盖(重写)、隐藏(重定义)的对比多态调用原理单继承中的虚函数表抽象类多继承中的虚函数表 多态的概念 概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体…

PosgreSQL比MySQL更优秀吗?

一日&#xff0c;一群开发者对PosgreSQL是不是比MySQL更优秀进行了激烈的辩论&#xff0c;双方吵的都要打起来了 正方有以下理由&#xff1a; PostgreSQL严格遵循SQL标准规范&#xff0c;相较MySQL在语法兼容性和功能完整性方面展现出更强的体系化设计&#xff0c;尤其在事务处…

『大模型笔记』Jason Wei: 大语言模型的扩展范式!

Jason Wei: 大语言模型的扩展范式! 文章目录 一. What is scaling and why do it?1. 什么是Scaling?2. 为什么要Scaling?二. Paradigm 1: Scaling next-word prediction1. 下一个词预测2. 极限多任务学习3. Why does scaling work?三. The challenge with next-word predi…