nn.KLDivLoss,nn.CrossEntropyLoss,nn.MSELoss,Focal_Loss

  1. KL loss:https://blog.csdn.net/qq_50001789/article/details/128974654

https://pytorch.org/docs/stable/nn.html

1. nn.L1Loss

1.1 公式

L1Loss: 计算预测 x和 目标y之间的平均绝对值误差MAE, 即L1损失
l o s s = 1 n ∑ i = 1 , . . . n ∣ x i − y i ∣ loss=\frac{1}{n} \sum_{i=1,...n}|x_i-y_i| loss=n1i=1,...nxiyi

1.2 语法

torch.nn.L1Loss(size_average=None, reduce=None, reduction='mean')
  • size_averagereduce已经被弃用,具体功能可由reduction替代
  • reduction:指定损失输出的形式,有三种选择:none|mean|sum。none:损失不做任何处理,直接输出一个数组mean:将得到的损失求平均值再输出,会输出一个数sum:将得到的损失求和再输出,会输出一个数

注意:输入的x y 可以是任意维数的数组,但是二者形状必须一致

1.3 应用案例

对比reduction不同时,输出损失的差异

import torch.nn as nn
import torchx = torch.rand(10, dtype=torch.float)
y = torch.rand(10, dtype=torch.float)
L1_none = nn.L1Loss(reduction='none')
L1_mean = nn.L1Loss(reduction='mean')
L1_sum = nn.L1Loss(reduction='sum')
out_none = L1_none(x, y)
out_mean = L1_mean(x, y)
out_sum = L1_sum(x, y)
print(x)
print(y)
print(out_none)
print(out_mean)
print(out_sum)

在这里插入图片描述

2.nn.MSELoss

2.1 公式

MSELoss也叫L2 loss, 即计算预测x和目标y的平方误差损失。MSELoss的计算公式如下:

l o s s = 1 n ∑ i = 1 , . . n ( x i − y i ) 2 loss=\frac{1}{n} \sum_{i=1,..n}(x_i-y_i)^2 loss=n1i=1,..n(xiyi)2

:输入x 与y 可以是任意维数的数组,但是二者shape大小一致

2.2 语法

torch.nn.MSELoss(reduction = 'mean')

其中:

  • reduction:指定损失输出的形式,有三种选择:none|mean|sumnone:损失不做任何处理,直接输出一个数组;mean:将得到的损失求平均值再输出,会输出一个数;sum:将得到的损失求和再输出,会输出一个数

2.3 应用案例

对比reduction不同时,输出损失的差异

import torch.nn as nn
import torchx = torch.rand(10, dtype=torch.float)
y = torch.rand(10, dtype=torch.float)
mse_none = nn.MSELoss(reduction='none')
mse_mean = nn.MSELoss(reduction='mean')
mse_sum = nn.MSELoss(reduction='sum')
out_none = mse_none(x, y)
out_mean = mse_mean(x, y)
out_sum = mse_sum(x, y)print('x:',x)
print('y:',y)
print("out_none:",out_none)
print("out_mean:",out_mean)
print("out_sum:",out_sum)

在这里插入图片描述

3 nn.SmoothL1Loss

3.1 公式

SmoothL1Loss是结合L1 lossL2 loss改进的,其数学定义如下:

在这里插入图片描述
在这里插入图片描述
如果绝对值误差低于 β \beta β, 则使用 L 2 L2 L2损失,,否则使用绝对值损失 L 1 L1 L1, ,此损失对异常值的敏感性低于 L 2 L2 L2 ,即当 x x x y y y相差过大时,该损失数值要小于 L 2 L2 L2损失,在某些情况下该损失可以防止梯度爆炸。

3.2 语法

torch.nn.SmoothL1Loss( reduction='mean', beta=1.0)
  • reduction:指定损失输出的形式,有三种选择:none|mean|sum。none:损失不做任何处理,直接输出一个数组;mean:将得到的损失求平均值再输出,会输出一个数;sum:将得到的损失求和再输出,会输出一个数
  • beta:损失在 L 1 L1 L1 L 2 L2 L2之间切换的阈值,默认beta=1.0

3.3 应用案例

import torch.nn as nn
import torch# reduction设为none便于逐元素对比损失值
loss_none = nn.SmoothL1Loss(reduction='none')
loss_sum = nn.SmoothL1Loss(reduction='sum')
loss_mean = nn.SmoothL1Loss(reduction='mean')
x = torch.randn(10)
y = torch.randn(10)
out_none = loss_none(x, y)
out_sum = loss_sum(x, y)
out_mean = loss_mean(x, y)
print('x:',x)
print('y:',y)
print("out_none:",out_none)
print("out_mean:",out_mean)
print("out_sum:",out_sum)

在这里插入图片描述

4. nn.CrossEntropyLoss

nn.CrossEntropyLoss 在pytorch中主要用于多分类问题的损失计算。

4.1 交叉熵定义

交叉熵主要是用来判定实际的输出与期望的输出的接近程度,也就是交叉熵的值越小,两个概率分布就越接近。
假设概率分布p为期望输出(target),概率分布q为实际输出(pred), H ( p , q ) H(p,q) H(p,q)为交叉熵, 则:
在这里插入图片描述
在这里插入图片描述

Pytorch中的CrossEntropyLoss()函数

Pytorch中计算的交叉熵并不是采用交叉熵定义的公式得到的,其中q为预测值,p为target值:
在这里插入图片描述
而是交叉熵的另外一种方式计算得到的:
在这里插入图片描述
PytorchCrossEntropyLoss()函数的主要是将log_softmax NLLLoss最小化负对数似然函数)合并到一块得到的结果

CrossEntropyLoss()=log_softmax() + NLLLoss() 

在这里插入图片描述

  • (1) 首先对预测值pred进行softmax计算:其中softmax函数又称为归一化指数函数,它可以把一个多维向量压缩在(0,1)之间,并且它们的和为1
    在这里插入图片描述
  • (2) 然后对softmax计算的结果,再取log对数。
  • (3) 最后再利用NLLLoss() 计算CrossEntropyLoss, 其中NLLLoss() 的计算过程为:将经过log_softmax计算的结果与target 相乘并求和,然后取反。

其中(1),(2)实现的是log_softmax计算,(3)实现的是NLLLoss(), 经过以上3步计算,得到最终的交叉熵损失的计算结果。

4.2 语法

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)
  • 最常用的参数为 reduction(str, optional) ,可设置其值为 mean, sum, none ,默认为 mean。该参数主要影响多个样本输入时,损失的综合方法。mean表示损失为多个样本的平均值,sum表示损失的和,none表示不综合。
  • weight: 可手动设置每个类别的权重,weight的数组大小和类别数需保持一致

4.3 应用案例

import torch.nn as nn
import torch
loss_func = nn.CrossEntropyLoss()
pre = torch.tensor([[0.8, 0.5, 0.2, 0.5]], dtype=torch.float)
tgt = torch.tensor([[1, 0, 0, 0]], dtype=torch.float)
print('----------------手动计算---------------------')
print("1.softmax")
print(torch.softmax(pre, dim=-1))
print("2.取对数")
print(torch.log(torch.softmax(pre, dim=-1)))
print("3.与真实值相乘")
print(-torch.sum(torch.mul(torch.log(torch.softmax(pre, dim=-1)), tgt), dim=-1))
print('-------------调用损失函数-----------------')
print(loss_func(pre, tgt))
print('----------------------------------------')

在这里插入图片描述
由此可见:

  • ①交叉熵损失函数会自动对输入模型的预测值进行softmax。因此在多分类问题中,如果使用nn.CrossEntropyLoss()则预测模型的输出层无需添加softmax层

  • nn.CrossEntropyLoss()=nn.LogSoftmax()+nn.NLLLoss().

nn.CrossEntropyLoss() 的target可以是one-hot格式,也可以直接输出类别,不需要进行one-hot处理,如下示例:

import torch
import torch.nn as nn
x_input=torch.randn(3,3)#随机生成输入 
print('x_input:\n',x_input) 
y_target=torch.tensor([1,2,0])#设置输出具体值 print('y_target\n',y_target)#计算输入softmax,此时可以看到每一行加到一起结果都是1
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x_input)
print('soft_output:\n',soft_output)#在softmax的基础上取log
log_output=torch.log(soft_output)
print('log_output:\n',log_output)#对比softmax与log的结合与nn.LogSoftmaxloss(负对数似然损失)的输出结果,发现两者是一致的。
logsoftmax_func=nn.LogSoftmax(dim=1)
logsoftmax_output=logsoftmax_func(x_input)
print('logsoftmax_output:\n',logsoftmax_output)#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(logsoftmax_output,y_target)
print('nlloss_output:\n',nlloss_output)#直接使用pytorch中的loss_func=nn.CrossEntropyLoss()看与经过NLLLoss的计算是不是一样
crossentropyloss=nn.CrossEntropyLoss()
crossentropyloss_output=crossentropyloss(x_input,y_target)
print('crossentropyloss_output:\n',crossentropyloss_output)
  • 其中pred为x_input=torch.randn(3,3,对应的target为y_target=torch.tensor([1,2,0]), target并没有处理为one-hot格式,也可以正常计算结果的。

5. nn.BCELoss和nn.BCEWithLogitsLoss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198233.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++入门到精通】新的类功能 | 可变参数模板 C++11 [ C++入门 ]

阅读导航 引言一、新的类功能1. 默认成员函数2. 类成员变量初始化3. 强制生成默认函数的关键字default4. 禁止生成默认函数的关键字delete5. override 和 final(1)override(2)final 二、可变参数模板递归函数方式展开参数包逗号表…

读像火箭科学家一样思考笔记03_第一性原理(上)

1. 思维的两种障碍 1.1. 为什么知识会成为一种缺陷而非一种美德 1.1.1. 知识是一种美德 1.1.2. 知识同样的特质也会把它变成一种缺点 1.1.3. 知识确实是个好东西,但知识的作用应该是给人们提供信息,而不是起约束作用 1.1.4. 知识应该启发智慧&#…

Git精讲

Git基本操作 创建Git本地仓库 git initgit clone 配置Git git config [--global] user.name "Your Name" git config [--global] user.email "emailexample.com"–global是一个可选项。如果使用了该选项,表示这台机器上所有的Git仓库都会使…

6 Redis的慢查询配置

1、redis的命令执行流程 redis的慢查询只针对步骤3 默认情况下,慢查询的阈值是10ms 在配置文件中进行配置 //这个参数的单位为微秒 //如果将这个值设置为负数,则会禁用慢日志功能 //如果将其设置为0,则会强制记录每个命令 slowlog-log-slow…

【C++历练之路】list的重要接口||底层逻辑的三个封装以及模拟实现

W...Y的主页 😊 代码仓库分享💕 🍔前言: 在C的世界中,有一种数据结构,它不仅像一个神奇的瑰宝匣,还像一位能够在数据的海洋中航行的智慧舵手。这就是C中的list,一个引人入胜的工具…

立仪科技光谱共焦在半导体领域的应用

半导体技术在近年来以极快的速度发展,对质量和精密度的要求也不断提升。在这样的背景下,用于材料与设备研究的先进检测技术如光谱共焦成像将自然地找到一席之地。下面我们将详细探讨一下光谱共焦在半导体领域中的应用。 光谱共焦技术,通过在细…

【DevOps】Git 图文详解(四):Git 使用入门

Git 图文详解(四):Git 使用入门 1.创建仓库2.暂存区 add3.提交 commit 记录4.Git 的 “指针” 引用5.提交的唯一标识 id,HEAD~n 是什么意思?6.比较 diff 1.创建仓库 创建本地仓库的方法有两种: 一种是创建…

MongoDB之索引和聚合

文章目录 一、索引1、说明2、原理3、相关操作3.1、创建索引3.2、查看集合索引3.3、查看集合索引大小3.4、删除集合所有索引(不包含_id索引)3.5、删除集合指定索引 4、复合索引 二、聚合1、说明2、使用 总结 一、索引 1、说明 索引通常能够极大的提高查…

CSS的选择器(一篇文章齐全)

目录 Day26:CSS的选择器 1、CSS的引入方式 2、CSS的选择器 2.1 基本选择器​编辑 2.2 组合选择器 2.3 属性选择器 2.4 伪类选择器 2.5 样式继承 2.6 选择器优先级 3、CSS的属性操作 3.1 文本属性 3.2 背景属性 3.3 边框属性 3.4 列表属性 3.5 dispal…

Hive调优

1.参数配置优化 设定Hive参数有三种方式: (1)配置Hive文件 当修改配置Hive文件的设定后,对本机启动的所有Hive进程都有效,因此配置是全局性的。 一般地,Hive的配置文件包括两部分: a&#xff…

Node.js之TCP(net)

Hi I’m Shendi Node.js之TCP(net) 最近使用Nodejs编写程序,需要用到自己编写的分布式工具,于是需要将Java版的用NodeJs重新写一遍,需要使用到TCP通信,于是在这里记录下Node.js TCP 的使用方法 依赖 需要使…

【面试经典150 | 算术平方根】

文章目录 写在前面Tag题目来源解题思路方法一:数学表达式方法二:二分法 其他语言python3 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并…

Asp.net MVC Api项目搭建

整个解决方案按照分层思想来划分不同功能模块,以提供User服务的Api为需求,各个层次的具体实现如下所示: 1、新建数据库User表 数据库使用SQLExpress版本,表的定义如下所示: CREATE TABLE [dbo].[User] ([Id] …

YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、FoucsIoU等损失函数

论文地址:官方Inner-IoU论文地址点击即可跳转 官方代码地址:官方代码地址-官方只放出了两种结合方式CIoU、SIoU 本位改进地址: 文末提供完整代码块-包括InnerEIoU、InnerCIoU、InnerDIoU等七种结合方式和其Focus变种 一、本文介绍 本文给…

手写消息队列(基于RabbitMQ)

一、什么是消息队列? 提到消息队列是否唤醒了你脑海深处的记忆?回看前面的这篇文章:《Java 多线程系列Ⅳ(单例模式阻塞式队列定时器线程池)》,其中我们在介绍阻塞队列时说过,阻塞队列最大的用途…

PWM实验

PWM相关概念 PWM:脉冲宽度调制定时器 脉冲:方波信号,高低电平变化产生方波 周期:高低电平变化所需要时间 频率:1s钟可以产生方波个数 占空比:在一个方波内,高电平占用的百分比 宽度调制:占…

开发知识点-uniapp微信小程序-开发指南

uniapp Vue的原型链生命周期函数onLoaduni.chooseLocationgetCurrentPages美团外卖微信小程序开发uniapp-美团外卖微信小程序开发P1 成果展示P2外卖小程序后端,学习给小程序写http接口P3 主界面配置P4 首页组件拆分P13 外卖列表布局筛选组件商家 布局测试数据创建样…

莹莹API管理系统源码附带两套模板

这是一个API后台管理系统的源码,可以自定义添加接口,并自带两个模板。 环境要求 PHP版本要求高于5.6且低于8.0,已测试通过的版本为7.4。 需要安装PHPSG11加密扩展。 已测试:宝塔/主机亲测成功搭建! 安装说明 &am…

Flutter 中数据存储的四种方式

在 Flutter 中,存储是指用于本地和远程存储和管理数据的机制。以下是 Flutter 中不同存储选项的概述和示例。 Shared Preferences(本地键值存储) Shared Preferences 是一种在本地存储少量数据(例如用户首选项或设置&#xff09…

C/C++统计数 2021年12月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C统计数 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C统计数 2021年12月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 给定一个数的序列S,以及一个区间[L, R], 求序列…