数据结构 堆

手写堆,而非stl中的堆

如何手写一个堆?

//将数组建成堆 <O(n)

for (int i = n / 2;i;i--) //从n/2开始down

down(i);

从n/2元素开始down,最下面一层元素的个数是n/2,其余上面的元素的个数是n/2,从最下面一层到最高层,每层元素的个数是n/2^m【m从下到上,从1计算,m=1时是最下面一层】,时间复杂度就是元素个数*高度【高度从下到上,从0计算】

性质

1.堆是一棵完全二叉树【除叶子结点之外,所有结点都是非空的】

2.小根堆:每个点的值都是小于等于其左右两个儿子的,根结点就是整个数据中的最小值

静态数组存储——一维数组

用一个一维数组来存,根结点放在数组开头,1号点是根结点,结点x的左儿子下标为2x,右儿子下标为2x+1

两个基本操作

对于所有的堆操作而言,每个操作都可以使用这两个操作构建。

down(x) 向下调整——从下往上down一次就变成一个堆

大数位于上面,需要向下移

每次与其两个儿子进行比较,找到较小的儿子与其进行交换,直到小于所有的儿子为止【该结点的子结点都大于该结点】

//递归实现

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

swap(h[u], h[t]);//交换

down(t);//递归,交换之前h[t]<=h[u],交换之后h[t]>h[u],h[t]中存的是大数,对其再进行down操作,即递归

}

return;

}

up(x) 向上调整

小数位于下面,需要向上移

每次只需要与其根结点比较,如果小于其根结点,就与其根结点进行交换,直到>=其根结点为止

//循环实现

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

swap(h[u / 2], h[u]);

u = u / 2;

}

return;

}

操作

【前三最重要】

【下标从1开始】

1.向集合中插入一个数

在整个堆的最后一个位置插入,然后再向上调整

heap[++size]=x;

up(size);

2.求集合中的最小值

heap[1];

3.删除最小值

用整个堆的最后一个元素覆盖掉堆顶的元素,然后size--,然后向下调整

因为删去最后一个结点特别容易,而删除根结点却不易

heap[1]=heap[size];

size--;

down(1);

4.删除任意一个元素

用堆的最后一个结点覆盖该结点,然后size--,然后向下调整(变大)、向上调整(变小),二选一执行

heap[k]=heap[size];

size--;

down(k);//变大

up(k);//变小

5.修改任意一个操作

heap[k]=x;

down(k);//变大

up(k);//变小

例题——堆排序

题目描述

输入一个长度为n的整数数列,从小到大输出前m小的数。

输入格式

第一行包含整数n和m。

第二行包含n个整数,表示整数数列。

输出格式

共一行,包含m个整数,表示整数数列中前m小的数。

数据范围

1≤m≤n≤10^5,

1≤数列中元素≤10^9

输入样例

5 3

4 5 1 3 2

输出样例

1 2 3

#include<iostream>

#include<algorithm>

using namespace std;

const int N = 100010;

int n, m;

int h[N], size1;//h[N]就是heap[N],size1存储当前有多少个元素

int main() {

scanf("%d%d", &n, &m);

for (int i = 1;i <= n;i++)

scanf("%d", &h[i]);

size1 = n;

//将数组建成堆 <O(n)

for (int i = n / 2;i;i--) //从n/2开始down

down(i);

while (m--) {

printf("%d ", h[1]);//每次输出堆顶元素,并将其删去

h[1] = h[size1];

size1--;

down(1);

}

return 0;

}

例题——模拟堆[包含映射]

增加两个数组

使用两个数组维护两个映射关系,ph[k] 存第k个插入的点在堆中的下标,hp[k] 存堆中下标为k的点是第几个插入的点

增加的原因

因为按第几个插入元素更改内容,需要知道第i个插入的元素在堆中的下标,所以需要ph的存在,而因为元素在进行down与up操作时,使得ph内容与实际堆的元素不对应,所以要改变ph,而改变ph应该知道,每一个下标对应的插入元素是第几个,所以需要hp的存在。每次交换位置时应该共同维护这两个数组。

交换操作

void heap_swap(int a, int b) {

swap(ph[hp[a]], ph[hp[b]]);//交换指向

swap(hp[a], hp[b]);

swap(h[a], h[b]);

return;

}

交换堆中的两个元素时,hp 和 ph 也改变。先改变 hp 和 ph 中的内容,然后改变这两个结点中的值。先根据交换的下标找到对应的 hp,并以两个 hp 元素值作为 ph 的下标,交换这2个 ph 元素值。之后根据下标交换 hp。

swap(ph[hp[a]], ph[hp[b]]);为什么这里的ph的下标是hp的元素值而不是堆中元素的编号?

因为ph的下标k的含义【即ph[k]的k的含义】是第k个插入的点,所以我们要找到第k个插入的点而不是堆中下标为k的点。

改变后的操作

up 操作

手写的heap_swap函数代替原来的swap函数

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

heap_swap(u / 2, u);

u = u / 2;

}

return;

}

down 操作

手写的heap_swap函数代替原来的swap函数

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

heap_swap(u, t);//交换

down(t);

}

return;

}

向集合中插入一个数

添加hp和ph数组中的映射关系

scanf("%d", &x); //向堆中插入x

size1++;

m++;

ph[m] = size1;

hp[size1] = m;

h[size1] = x;

up(size1);

输出集合中的最小值

printf("%d\n", h[1])

删除最小值

手写的heap_swap函数代替原来的swap函数

heap_swap(1, size1);

size1--;

down(1);

删除第k个插入的元素

scanf("%d", &k);//输入k

k = ph[k];//找到第k个插入的元素在堆中的下标,然会对其进行删除

heap_swap(k, size1);//用堆中最后一个元素覆盖找到的元素,然会进行调整

size1--;

down(k), up(k);

修改第k个插入的元素

scanf("%d%d", &k, &x);//输入k和修改后的值x

k = ph[k];//找到第k个插入的元素在堆中的下标,然后修改其值,修改后进行调整

h[k] = x;

down(k), up(k);

题目描述

维护一个集合,初始时集合为空,支持如下几种操作:

“I x”,插入一个数x;

“PM”,输出当前集合中的最小值;

“DM”,删除当前集合中的最小值(当最小值不唯一时,删除最早插入的最小值);

“D k”,删除第k个插入的数;

“C k x”,修改第k个插入的数,将其变为x;

现在要进行N次操作,对于所有第2个操作,输出当前集合的最小值。

输入格式

第一行包含整数N。

接下来N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。

输出格式

对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围

1≤N≤10^5

−10^9≤x≤10^9

数据保证合法。

输入样例

8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM

输出样例

-10
6

#include<iostream>

#include<algorithm>

#include<string.h>

using namespace std;

const int N = 100010;

int h[N], ph[N], hp[N], size1;//h[N]就是heap[N],size1存储当前有多少个元素,ph[k]存第k个插入数组的下标

//ph[j]=k【第j次插入数组的数的下标是k】,hp[k]=j【下标为k的数是第j次插入数组中的数】

void heap_swap(int a, int b) {

swap(ph[hp[a]], ph[hp[b]]);//交换指向

swap(hp[a], hp[b]);

swap(h[a], h[b]);

return;

}

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

heap_swap(u, t);//交换

down(t);

}

return;

}

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

heap_swap(u / 2, u);

u = u / 2;

}

return;

}

int main() {

int n, m = 0;

scanf("%d", &n);

while (n--) {

char op[10];

int k, x;

scanf("%s", op);

if (!strcmp(op, "I")) {

scanf("%d", &x);

size1++;

m++;

ph[m] = size1;

hp[size1] = m;

h[size1] = x;

up(size1);

}

else if (!strcmp(op, "PM"))

printf("%d\n", h[1]);

else if (!strcmp(op, "DM")) {

heap_swap(1, size1);

size1--;

down(1);

}

else if (!strcmp(op, "D")) {

scanf("%d", &k);

k = ph[k];

heap_swap(k, size1);

size1--;

down(k), up(k);

}

else {

scanf("%d%d", &k, &x);

k = ph[k];

h[k] = x;

down(k), up(k);

}

}

return 0;

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198300.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文复现】QuestEval:《QuestEval: Summarization Asks for Fact-based Evaluation》

以下是复现论文《QuestEval: Summarization Asks for Fact-based Evaluation》&#xff08;NAACL 2021&#xff09;代码https://github.com/ThomasScialom/QuestEval/的流程记录&#xff1a; 在服务器上conda创建虚拟环境questeval&#xff08;python版本于readme保持一致&…

【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5713-洛谷团队系统【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格…

C++--哈希表--散列--冲突--哈希闭散列模拟实现

文章目录 哈希概念一、哈希表闭散列的模拟实现二、开散列(哈希桶)的模拟实现数据类型定义析构函数插入查找删除 哈希概念 unordered系列的关联式容器之所以效率比较高&#xff0c;是因为其底层使用了哈希结构。 顺序结构以及平衡树中&#xff0c;元素关键码与其存储位置之间没…

C#WPF文本转语音实例

本文介绍C#WPF文本转语音实例 实现方法:使用类库(SpeechSynthesizer )实现的。 一、首先是安装程序包。 二、创建项目 需要添加引用using System.Speech.Synthesis; UI界面 <Windowx:Class="TextToSpeechDemo.MainWindow"xmlns="http://schemas.micr…

JVM垃圾回收相关概念

目录 一、System.gc()的理解 二、内存溢出与内存泄露 &#xff08;一&#xff09;OOM &#xff08;二&#xff09;内存泄露 三、StopTheWorld 四、垃圾回收的并行与并发 五、安全点与安全区域 &#xff08;一&#xff09;安全点 &#xff08;二&#xff09;安全区域 …

【JavaEE初阶】计算机是如何工作的

一、计算机发展史 计算的需求在⼈类的历史中是广泛存在的&#xff0c;发展大体经历了从⼀般计算⼯具到机械计算机到目前的电子计算机的发展历程。 人类对计算的需求&#xff0c;驱动我们不断的发明、改善计算机。目前这个时代是“电子计算机”的时代&#xff0c;发展的潮流是…

Qt按钮大全续集(QCommandLinkButton和QDialogButtonBox )

## QCommandLinkButton 控件简介 QCommandLinkButton 控件中文名是“命令链接按钮”。QCommandLinkButton 继承QPushButton。CommandLinkButton 控件和 RadioButton 相似,都是用于在互斥选项中选择一项。表面上同平面按钮一样,但是 CommandLinkButton 除带有正常的按钮上的文…

通过汇编理解cortex-m3:第0章

第0章&#xff1a;准备工作 基本想法&#xff1a;利用汇编和gdb调试&#xff0c;来学习cortex-m3汇编指令&#xff0c;以及一些寄存器的功能。 软件和硬件&#xff1a; 硬件&#xff1a;韦东山瑞士军刀中的最小核心板&#xff08;STM32F103C8T6&#xff09; STLINK-V2&#…

初刷leetcode题目(3)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

ROS参数服务器(Param):通信模型、Hello World与拓展

参数服务器在ROS中主要用于实现不同节点之间的数据共享。 参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据。 使用场景一般存储一些机器人的固有参数&…

C语言实现冒泡排序(超详细)

排序算法 - 冒泡排序 什么是冒泡排序&#xff1f;冒泡排序有啥用呢&#xff1f;冒泡排序的实现代码讲解冒泡排序的总结 什么是冒泡排序&#xff1f; 冒泡排序是一种简单的排序算法&#xff0c;它重复地遍历要排序的列表&#xff0c;一次比较两个元素&#xff0c;如果它们的顺序…

OpenHarmony源码下载

OpenHarmony源码下载 现在的 OpenHarmony 4.0 源码已经有了&#xff0c;在 https://gitee.com/openharmony 地址中&#xff0c;描述了源码获取的方式&#xff0c;但那是基于 ubuntu 或者说是 Linux 的下载方式。在 windows 平台下的下载方式没有做出介绍。 我自己尝试了 wind…

Python 爬虫入门

文章目录 Python 爬虫入门requests 库beautifulsoup4库函数findall()&#xff0c;find()函数get() 爬虫实例 1&#xff1a;抓小说爬虫实例 2&#xff1a;抓豆瓣 top 250 的电影信息后记 Python 爬虫入门 Python 的爬虫功能使得程序员可以快速抓取并分析网页中的信息&#xff0…

Spring Cloud学习(十)【Elasticsearch搜索功能 分布式搜索引擎02】

文章目录 DSL查询文档DSL查询分类全文检索查询精准查询地理坐标查询组合查询相关性算分Function Score Query复合查询 Boolean Query 搜索结果处理排序分页高亮 RestClient查询文档快速入门match查询精确查询复合查询排序、分页、高亮 黑马旅游案例 DSL查询文档 DSL查询分类 …

大数据HCIE成神之路之数学(2)——线性代数

线性代数 1.1 线性代数内容介绍1.1.1 线性代数介绍1.1.2 代码实现介绍 1.2 线性代数实现1.2.1 reshape运算1.2.2 转置实现1.2.3 矩阵乘法实现1.2.4 矩阵对应运算1.2.5 逆矩阵实现1.2.6 特征值与特征向量1.2.7 求行列式1.2.8 奇异值分解实现1.2.9 线性方程组求解 1.1 线性代数内…

谈谈如何写作(二)

序言 没有什么比一套好理论更有用了。——库尔特勒温 谈谈如何写作系列今天进入第二篇&#xff0c;第一篇请速戳&#xff1a;谈谈如何写作&#xff08;一&#xff09; 今天&#xff0c;博主从如何写报告讲起。 Q&#xff1a;如何写报告 如何写报告呢&#xff1f; 当每位盆友接到…

【华为HCIP | 华为数通工程师】刷题日记1116(一个字惨)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

阿里云ECS11月销量王 99元/年

这一波好像真没得说&#xff0c;老用户居然都有份&#xff0c;买来练习、测试冒似已经够了&#xff01; 阿里云ECS11月销量王 99元/年 2核2G 3M固定带宽不限流量&#xff0c;新老同享&#xff0c;新购、续费同价&#xff0c;开发必备&#xff01; 活动规则 云服务器ECS 云创季…

DevToys:开发者的多功能瑞士军刀,让编程更高效!

DevToys&#xff1a;开发者的多功能瑞士军刀&#xff0c;让编程更高效&#xff01; DevToys 是一款专为开发者设计的实用工具&#xff0c;它能够帮助用户完成日常的开发任务&#xff0c;如格式化 JSON、比较文本和测试正则表达式&#xff08;RegExp&#xff09;。它的优势在于…

OpenAI Assistants-API简明教程

OpenAI在11月6号的开发者大会上&#xff0c;除了公布了gpt4-v、gpt-4-turbo等新模型外&#xff0c;还有一个assistants-api&#xff0c;基于assistants-api开发者可以构建自己的AI助手&#xff0c;目前assistants-api有三类的工具可以用。首先就是之前大火的代码解释器(Code In…