A 使三个字符串相等
求三个串的最长公共前缀
class Solution {
public:int findMinimumOperations(string s1, string s2, string s3) {int n1 = s1.size(), n2 = s2.size(), n3 = s3.size();int i = 0;for (; i < min({n1, n2, n3}); i++)if (!(s1[i] == s2[i] && s2[i] == s3[i]))break;if (i == 0)return -1;return n1 + n2 + n3 - i * 3;}
};
B 区分黑球与白球
双指针:一个指针 i i i 遍历字符串,一个指针 j j j 指向下一个 0 0 0 应该移动到位置, i i i 指向 0 0 0 时更新答案同时 j + 1 j+1 j+1
class Solution {
public:long long minimumSteps(string s) {long long res = 0;for (int j = 0, i = 0; i < s.size(); i++)if (s[i] == '0') {res += i - j;j++;}return res;}
};
C 最大异或乘积
贪心:从高到低枚举二进制每一位 i ∈ [ 0 , n ) i\in [0,n) i∈[0,n),有两种情况:
1) a a a 和 b b b 这一位相同,则存在 x x x 使得 a ∧ x a\wedge x a∧x 和 b ∧ x b\wedge x b∧x 这一位都为 1 1 1 ;
2) a a a 和 b b b 这一位不同,则 a ∧ x a\wedge x a∧x 和 b ∧ x b\wedge x b∧x 中只有一个数这一位为 1 1 1 ,若当前 a ∧ x a\wedge x a∧x 不考虑这一位的数大于 b ∧ x b\wedge x b∧x 不考虑这一位的数时,这一位 1 1 1 应该给 b ∧ x b\wedge x b∧x ,否则给 a ∧ x a\wedge x a∧x
class Solution {
public:using ll = long long;int maximumXorProduct(long long a, long long b, int n) {ll mod = 1e9 + 7;ll na = a, nb = b;for (ll i = n - 1; i >= 0; i--)if ((na >> i & 1LL) == (nb >> i & 1LL)) {na |= 1LL << i;nb |= 1LL << i;} else {if ((na & (~(1LL << i))) > (nb & (~(1LL << i)))) {nb |= 1LL << i;na &= ~(1LL << i);} else {na |= 1LL << i;nb &= ~(1LL << i);}}return (na % mod * (nb % mod) % mod + mod) % mod;}
};
D 找到 Alice 和 Bob 可以相遇的建筑
二分+线段树:对于一个查询 [ a , b ] [a,b] [a,b] ( a ≤ b ) (a\le b) (a≤b) , 有三种情况:
1) a = = b a==b a==b,答案为 a a a
2) a ≠ b a\ne b a=b ,且 h e i g h t s [ a ] < h e i g h t s [ b ] heights[a] < heights[b] heights[a]<heights[b] ,答案为 b b b
3) a ≠ b a\ne b a=b ,且 h e i g h t s [ a ] ≥ h e i g h t s [ b ] heights[a] \ge heights[b] heights[a]≥heights[b],答案为满足 m a x { h e i g h t s [ k ] ∣ k ∈ [ b + 1 , i ] } > h e i g h t s [ a ] max\{heights[k]\;|\; k \in [b+1,i] \}\; >heights[a] max{heights[k]∣k∈[b+1,i]}>heights[a] 的最小的 i i i ,通过线段树来维护区间最大值,然后通过二分求 i i i
class SegmentTree {
public:typedef long long ll;inline void push_down(ll index) {st[index << 1].lazy = 1;st[index << 1 | 1].lazy = 1;st[index << 1].mark = max(st[index << 1].mark, st[index].mark);st[index << 1 | 1].mark = max(st[index << 1 | 1].mark, st[index].mark);st[index << 1].s = max(st[index << 1].s, st[index].mark);st[index << 1 | 1].s = max(st[index << 1 | 1].s, st[index].mark);st[index].lazy = 0;}inline void push_up(ll index) {st[index].s = max(st[index << 1].s, st[index << 1 | 1].s);}SegmentTree(vector<int> &init_list) {st = vector<SegmentTreeNode>(init_list.size() * 4 + 10);build(init_list, 1, init_list.size());}void build(vector<int> &init_list, ll l, ll r, ll index = 1) {st[index].tl = l;st[index].tr = r;st[index].lazy = 0;st[index].mark = 0;if (l == r) {st[index].s = init_list[l - 1];} else {ll mid = (l + r) >> 1;build(init_list, l, mid, index << 1);build(init_list, mid + 1, r, index << 1 | 1);push_up(index);}}ll query(ll l, ll r, ll index = 1) {if (l <= st[index].tl and st[index].tr <= r) {return st[index].s;} else {if (st[index].lazy)push_down(index);if (r <= st[index << 1].tr)return query(l, r, index << 1);else if (l > st[index << 1].tr)return query(l, r, index << 1 | 1);return max(query(l, r, index << 1), query(l, r, index << 1 | 1));}}private:struct SegmentTreeNode {ll tl;ll tr;ll s;ll mark;int lazy;};vector<SegmentTreeNode> st;
};class Solution {
public:vector<int> leftmostBuildingQueries(vector<int> &heights, vector<vector<int>> &queries) {int n = heights.size();SegmentTree stree(heights);vector<int> res;res.reserve(queries.size());for (auto &qi: queries) {int a = min(qi[0], qi[1]), b = max(qi[0], qi[1]);if (a == b)res.push_back(a);else if (heights[a] < heights[b])res.push_back(b);else {//ha>hbint l = b + 1, r = n;while (l < r) {int mid = (l + r) / 2;if (stree.query(b + 1 + 1, mid + 1) > heights[a])r = mid;elsel = mid + 1;}if (l < n)res.push_back(l);elseres.push_back(-1);}}return res;}
};