【OpenCV】仿射变换中cv2.estimateAffine2D 的原理

目录

一、介绍

二、仿射变换矩阵 (M)

1.M中六个元素的说明

2.计算旋转角度

3.M的计算过程

三、输出状态 (inliers)

四、错切参数


一、介绍

        cv2.estimateAffine2D 是 OpenCV 库中的一个函数,用于估计两个二维点集之间的仿射变换矩阵。即第一个点集经仿射变换转换到第二个点集需要的操作,包括缩放、旋转和平移。

        先来看代码:

import cv2
import numpy as np# 原始点集
srcPoints = np.array([[50, 50], [200, 50], [50, 200]], dtype=np.float32)
# 目标点集
dstPoints = np.array([[70, 100], [220, 70], [150, 250]], dtype=np.float32)# 估计仿射变换矩阵
M, inliers = cv2.estimateAffine2D(srcPoints, dstPoints)# 打印估计得到的仿射变换矩阵
print('M:\n', M)
'''
M:
[[ 1.          0.53333333 -6.66666667][-0.2         1.         60.        ]]
'''print('inliers:\n', inliers)
'''
inliers:[[1][1][1]]
'''

        从上面的代码中可以看到,函数的输入是两个参数,分别表示原始点集和目标点集。函数的输出参数包括两个部分:仿射变换矩阵和输出状态。

二、仿射变换矩阵 (M)

        第一个返回值是一个 2x3 的浮点型矩阵,表示从原始点集到目标点集的仿射变换。矩阵的前两列是旋转和缩放的部分,最后一列是平移的部分。可以使用这个矩阵来将原始图像或点集进行仿射变换,使其与目标图像或点集对齐。

1.M中六个元素的说明

        M[0,0]:表示x方向上的缩放。大于 1,则表示进行了放大操作;小于 1,则表示进行了缩小操作;等于 1,则表示没有进行缩放操作。

        M[0,1]:表示垂直错切参数,与M[1,0]一起用于计算旋转角度。

        M[0,2]:表示x方向上的平移。

        M[1,0]:表示水平错切参数,与M[1,1]一起用于计算旋转角度。

        M[1,1]:表示y方向上的缩放。大于 1,则表示进行了放大操作;小于 1,则表示进行了缩小操作;等于 1,则表示没有进行缩放操作。

        M[1,2]:表示y方向上的平移。

2.计算旋转角度

        旋转角度的计算公式:

angle = atan2(M[1, 0], M[0, 0])

        其中,atan2 是一个反三角函数,用于计算给定的 y 值和 x 值的反正切值。这个角度表示原始点集经过变换后的旋转角度。

代码如下,np.arctan2返回的是弧度值,如果需要角度值还需要再转换一下:

# 得到弧度值
da = np.arctan2(m[1, 0], m[0, 0])
# 得到角度值
theta_deg = np.degrees(da)

3.M的计算过程

        1. 首先,根据输入的原始点集 srcPoints 和目标点集 dstPoints,构建一个线性方程系统。对于每个点对 (srcPoint, dstPoint),构建以下两个方程:

\left\{\begin{matrix} dstPoint.x = M[0, 0] * srcPoint.x + M[0, 1] * srcPoint.y + M[0, 2] \\ dstPoint.y = M[1, 0] * srcPoint.x + M[1, 1] * srcPoint.y + M[1, 2] \end{matrix}\right.

        2. 将线性方程系统转化为矩阵形式 A * X = B,其中:

        A 是一个 2N x 6 的矩阵,其中 N 是点对的数量。A 的每一行对应一个点对,包含原始点的坐标和一个常数项。

        X 是一个 6 x 1 的矩阵,表示待求解的仿射变换矩阵的参数。

        B 是一个 2N x 1 的矩阵,包含目标点的坐标。

        3. 使用最小二乘法来求解矩阵 X,使得 A * X 尽可能接近 B。最小二乘法的目标是最小化残差的平方和。

        4. 根据求解得到的矩阵 X,构建估计的仿射变换矩阵 M:

\begin{matrix} \\ M[0, 0] = X[0] \\ M[0, 1] = X[1] \\ M[0, 2] = X[2] \\ M[1, 0] = X[3] \\ M[1, 1] = X[4] \\ M[1, 2] = X[5] \end{matrix}

        最小二乘法的目标是找到一个最优的仿射变换矩阵,使得原始点集经过变换后与目标点集尽可能接近。通过最小化残差的平方和,可以得到一个最优的估计结果。

        需要注意的是,由于存在噪声和异常值的影响,估计的仿射变换矩阵可能不是完全准确的。因此,输出的仿射变换矩阵 M 可能只是一个近似的估计结果,需要根据实际情况进行评估和调整。

三、输出状态 (inliers)

        inliers是一个整数或浮点数的向量,表示每个输入点对应的输出点是否被认为是内点(inlier)。内点是指在估计仿射变换时被认为是一致的点。输出状态的长度与输入点集的数量相同,每个元素的值为 0 或 1,其中 1 表示对应的点是内点,0 表示对应的点是外点(outlier)。

        cv2.estimateAffine2D确定内点(inliers)的算法有三个可选:

        cv2.RANSAC: 使用 RANSAC 算法进行估计。该选项适用于存在较多离群点的情况,可以提高估计的鲁棒性,这也是默认参数。
        cv2.LMEDS: 使用最小中值估计(Least-Median Estimation,LMedS)算法进行估计。该选项适用于存在少量离群点的情况,可以提高估计的准确性。
        cv2.RHO: 使用 RHO 算法进行估计。该选项适用于存在较多离群点的情况,可以提高估计的鲁棒性。

        可以通过下面的方式修改内点检测方式:

M, inliers = cv2.estimateAffine2D(srcPoints, dstPoints, cv2.RHO)

四、错切参数

1.错切参数的定义

        上面提到了一个名词叫错切参数,这里解释一下。错切参数(Shear parameters)是一种用于描述错切变换的数值参数。在二维图形变换中,错切变换是一种线性变换,它通过改变图形的形状来实现。

        在二维平面上,错切变换是一种将对象沿着水平或垂直方向进行平移和拉伸的变换。它会改变对象的形状,使其在一个方向上相对于另一个方向发生倾斜。

        在错切变换中,有两个主要的错切参数:水平错切参数(shear parameter)和垂直错切参数(shear parameter)。这些参数决定了在水平和垂直方向上的错切程度。
        水平错切参数(shx):它表示在水平方向上的错切程度。当 shx 的值为正时,图形在水平方向上向右上方倾斜;当 shx 的值为负时,图形在水平方向上向左上方倾斜;当 shx 的值为零时,表示没有水平方向上的错切变换。

        垂直错切参数(shy):它表示在垂直方向上的错切程度。当 shy 的值为正时,图形在垂直方向上向右下方倾斜;当 shy 的值为负时,图形在垂直方向上向左下方倾斜;当 shy 的值为零时,表示没有垂直方向上的错切变换。

        这些错切参数可以通过仿射变换矩阵中的相应元素来表示。在二维仿射变换矩阵中,水平错切参数通常对应于矩阵的第一行第二列元素(M[0, 1]),而垂直错切参数通常对应于矩阵的第二行第一列元素(M[1, 0])。

2.错切参数例子

        以下是一个示例,说明如何使用错切参数对对象进行变形:

(1)水平错切

        水平错切就是原图每个像素的y不变,x根据M[0,1]进行线性变换。

        假设有一个矩形对象,原始的顶点坐标为 (x1, y1), (x2, y2), (x3, y3), (x4, y4)。要对该矩形进行水平方向的错切变形,可以使用错切参数 shx,并将每个顶点的 x 坐标按照如下方式进行变换:

        \begin{matrix} \\ x_1{new} = x_{1} + shx * y_1 \\ x_2{new} = x_{2} + shx * y_2 \\ x_3{new} = x_3 + shx * y_3 \\ x_4{new} = x_4 + shx * y_4 \end{matrix}

        这样,通过调整 shx 的值,可以控制矩形在水平方向上的错切程度。

        下面是水平错切的代码和结果:

import cv2
import numpy as npimg_path = r'data/005.jpg'
target_path = r'data/005_1.jpg'
scale = 0.2 # 变换的比例
img = cv2.imread(img_path)
# 构造错切变换矩阵
M = np.float32([[1, 0.2, 0], [0, 1, 0]])
h, w, _ = img.shape
img_shear = cv2.warpAffine(img, M, (w + int(scale * w), h))
cv2.imwrite(target_path, img_shear)

(2)垂直错切

        垂直错切就是原图每个像素的x不变,y根据M[1,0]进行线性变换。

        要对矩形进行垂直方向的错切变形,可以使用错切参数 shy,并将每个顶点的 y 坐标按照如下方式进行变换:

\begin{matrix} \\ x_1{new} = shx * x_{1} + y_1 \\ x_2{new} = shx * x_{2} + y_2 \\ x_3{new} = shx * x_3 + y_3 \\ x_4{new} = shx * x_4 + y_4 \end{matrix}

        通过调整 shy 的值,可以控制矩形在垂直方向上的错切程度。

        下面是垂直错切的代码和结果:

import cv2
import numpy as npimg_path = r'data/005.jpg'
target_path = r'data/005_2.jpg'
scale = 0.2 # 变换的比例
img = cv2.imread(img_path)
# 构造错切变换矩阵
M = np.float32([[1, 0, 0], [0.2, 1, 0]])
h, w, _ = img.shape
img_shear = cv2.warpAffine(img, M, (w, h + int(scale * h)))
cv2.imwrite(target_path, img_shear)



        需要注意的是,错切参数的值可以是正数、负数或零,具体取决于所需的错切方向和程度。

        cv2.estimateAffine2D 的原理就介绍到这里,关注不迷路(#^.^#)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198499.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决Requests中使用httpbin服务器问题:自定义URL的实现与验证

问题背景 在使用Python的Requests模块进行单元测试时,可能会遇到无法使用本地运行的httpbin服务器进行测试的问题。这是因为测试脚本允许通过环境变量HTTPBIN_URL指定用于测试的本地httpbin实例,但在某些测试用例中,URL是硬编码为httpbin.or…

成都瀚网科技有限公司抖音带货可靠么

近年来,随着抖音等短视频平台的兴起,越来越多的企业开始利用这些平台进行产品推广和销售。成都瀚网科技有限公司也紧跟这一趋势,通过抖音开展带货业务。那么,成都瀚网科技有限公司的抖音带货是否可靠呢?本文将对此进行…

KylinOSv10修改ulimit值

问题 ulimit 值过小,可能导致压力测试遇到瓶颈,比如通过nginx建立tcp长链接时,链接数量受限。需要修改ulimit值,Linux默认为1024。 解决 使用root或sudo权限,编辑文件/etc/security/limits.conf,新增以下…

pipeline + node +jenkins+kubernetes部署yarn前端项目

1、编写Dockerfile文件 # Set the base image FROM node:16.10.0# WORKDIR /usr/src/app/ WORKDIR /home/option# Copy files COPY ./ /home/option/# Build arguments LABEL branch${BRANCH} LABEL commit${COMMIT} LABEL date${BUILD_DATE} ARG ENV# Set ENV variables ENV …

基于C++实现循环赛日程表(分治算法)

一、问题描叙 设有n2^k个运动员,要进行网球循环赛。现在要设计一个满足以下要求的比赛日程表 每个选手必须与其他n-1个选手各赛一场每个选手一天只能赛一次循环赛一共进行n-1天 二、问题分析 按此要求可将比赛日程表设计成n行n-1列的表,在表中第 i 行…

金属压块液压打包机比例阀放大器

液压打包机是机电一体化产品,主要由机械系统、液压控制系统、上料系统与动力系统等组成。整个打包过程由压包、回程、提箱、转箱、出包上行、出包下行、接包等辅助时间组成。市场上液压打包机主要分为卧式与立式两种,立式废纸打包机的体积比较小&#xf…

Hive数据表操作--学习笔记

1,Hive数据表操作 1,建表语句和内外部表 ①创建内部表 create [external] table [if not exists] 表名( 字段名 字段类型 [comment 注释], 字段名 字段类型 [comment 注释], ... ) [row format delimited fields terminated by 指定分隔符];&#xff0…

如何简单挖掘公益SRC?

目录 1、寻找漏洞 1)谷歌语法 2)fofa 2、挖掘漏洞 3、提交报告 第一步:“标题”和“厂商信息”和“所属域名” 第二步:其它内容 第三步:复现步骤 0、IP域名归属证明 1、漏洞页 2、该干啥 3、注入的结果 4、上榜吉时 时间&#x…

【开源】基于JAVA的快递管理系统

项目编号: S 007 ,文末获取源码。 \color{red}{项目编号:S007,文末获取源码。} 项目编号:S007,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 数据中心模块2.2 快递类型模块2.3 快…

Springboot 对于数据库字段加密方案(此方案是对字符串处理的方案)

背景:在erp开发中,有些用户比较敏感数据库里的数据比较敏感,系统给用户部署后,公司也不想让任何人看到数据,所以就有了数据库字段加密方案。 技术 spring boot mybatisplus 3.3.1 mybatisplus 实际提供了 字段加密方案 第一 他…

Java智慧工地SaaS管理平台源码:AI/云计算/物联网

智慧工地是指运用信息化手段,围绕施工过程管理,建立互联协同、智能生产、科学管理的施工项目信息化生态圈,并将此数据在虚拟现实环境下与物联网采集到的工程信息进行数据挖掘分析,提供过程趋势预测及专家预案,实现工程…

Elastic Search的RestFul API入门:index索引的增删改查

在我们开始深入探讨Elasticsearch的Restful API之前,有一点非常重要,那就是Elasticsearch存储的数据是JSON结构的。JSON,全称JavaScript Object Notation,是一种轻量级的数据交换格式,易于人阅读和编写,同时…

拜耳阵列(Bayer Pattern)以及常见彩色滤波矩阵(CFA)

一、拜耳阵列的来源 图像传感器将光线转化成电流,光线越亮,电流的数值就越大;光线越暗,电流的数值就越小。图像传感器只能感受光的强弱,无法感受光的波长。由于光的颜色由波长决定,所以图像传播器无法记录…

解决 VS2022 关于 c++17 报错: C2131 表达式必须含有常量值

使用 VS2022 编译 ORB-SLAM3 加载Vocabulary 二进制ORBvoc.bin 时,在 DBOW2 里修改 TemplatedVocabulary.h 代码显示这样的错误: 编译器错误 C2131 表达式的计算结果不是常数 定位到我的代码中: char buf [size_node] ; 原因 : …

Vatee万腾科技创新之舟:Vatee数字化力量引领未来的独特路径

在数字化的大潮中,Vatee万腾如一艘科技创新之舟,在未来的海洋中翱翔。vatee万腾以强大的数字化力量为桨,引领着行业向着新的、独特的路径前行,塑造着数字时代的未来。 Vatee万腾不仅仅是一家科技公司,更是一艘创新之舟…

(八)、基于 LangChain 实现大模型应用程序开发 | 基于知识库的个性化问答 (检索 Retrieval)

检索增强生成(RAG)的整体工作流程如下: 在构建检索增强生成 (RAG) 系统时,信息检索是核心环节。检索是指根据用户的问题去向量数据库中搜索与问题相关的文档内容,当我们访问和查询向量数据库时可能会运用到如下几种技术…

uni-app:前端实现心跳机制(全局)+局部页面控制心跳暂停和重新心跳

一、App.vue全局中写入心跳 在data中定义变量heartbeatTimer,便于暂停心跳使用在onLaunch中引用开始心跳的方法startHeartbeat()写入开始心跳方法写入暂停心跳方法写入请求后端刷心跳机制 定义变量 // 在全局设置的心跳机制中添加一个变量来保存定时器的标识 data(…

Find My蓝牙耳机|苹果Find My技术与耳机结合,智能防丢,全球定位

蓝牙耳机就是将蓝牙技术应用在免持耳机上,让使用者可以免除恼人电线的牵绊,自在地以各种方式轻松通话。自从蓝牙耳机问世以来,一直是行动商务族提升效率的好工具。正是应为蓝牙耳机小巧无线,人们越来越喜欢随身携带蓝牙耳机出门&a…

【论文阅读】基于隐蔽带宽的汽车控制网络鲁棒认证(一)

文章目录 Abstract第一章 引言1.1 问题陈述1.2 研究假设1.3 贡献1.4 大纲 第二章 背景和相关工作2.1 CAN安全威胁2.1.1 CAN协议设计2.1.2 CAN网络攻击2.1.3 CAN应用攻击 2.2 可信执行2.2.1 软件认证2.2.2 消息身份认证2.2.3 可信执行环境2.2.4 Sancus2.2.5 VulCAN 2.3 侧信道攻…

文件编码、转换、乱码问题

文件编码 用来表示文本内容的字符集和字符编码方式,决定了在文本文件中使用的字符集和字符的二进制表示方式。常见的文件编码包括 UTF-8、UTF-16、ASCII、ISO-8859-1 等。选择文件编码时,需要考虑到所支持的字符集范围、编码方式对特定语言的支持程度以…