设计模式-解析器-笔记

“领域规则”模式

在特定领域中,某些变化虽然频繁,但可以抽象为某种规则。这时候,结合特定领域,将稳日抽象为语法规则,从而给出在该领域下的一般性解决方案。

典型模式:Interpreter

动机(Motivation)

在软件构建过程中,如果某一特定领域的问题比较复杂,类似的结构不断重复出现,如果使用普通的编程方式实现将面临非常频繁的变化。

在这种情况下,将特定领域的问题表达为某种语法规则下的句子,然后构建一个解释器来解释这样的句子,从而达到解决问题的目的。

模式定义:

给定一个语言,定义它的文法的一种表示,并定义一种解释器,这个解释器使用该表示来解释语言中的句子。

示例:

#include <iostream>
#include <map>
#include <stack>using namespace std;class Expression {
public:virtual int interpreter(map<char, int>& var) = 0;virtual ~Expression() {}
};//变量表达式
class VarExpression : public Expression {char key;
public:VarExpression(const char& key) {this->key = key;}int interpreter(map<char, int>& var) {return var[key];}
};//符号表达式
class SymbolExpression : public Expression {//运算符左右两个参数
protected:Expression* left;Expression* right;public:SymbolExpression(Expression* left, Expression* right) {this->left = left;this->right = right;}
};//加法运行
class AddExpression : public SymbolExpression {
public:AddExpression(Expression* left, Expression* right): SymbolExpression(left, right){}int interpreter(map<char, int>& var) {return left->interpreter(var) + right->interpreter(var);}
};//减法运行
class SubExpression : public SymbolExpression {
public:SubExpression(Expression* left, Expression* right): SymbolExpression(left, right){}int interpreter(map<char, int>& var) {return left->interpreter(var)- right->interpreter(var);}
};Expression* analyse(string expStr) {stack<Expression*> expStack;Expression* left;Expression* right;for (int i = 0; i < expStr.size(); ++i){switch (expStr[i]){case '+'://加法运算left = expStack.top();right = new VarExpression(expStr[++i]);expStack.push(new AddExpression(left, right));break;case '-'://减法运算left = expStack.top();right = new VarExpression(expStr[++i]);expStack.push(new SubExpression(left, right));break;default:expStack.push(new VarExpression(expStr[i]));break;}}return expStack.top();
}void release(Expression* expression) {// 释放表达式树的节点内存
}int main() {string expStr = "a+b-c+d";map<char, int> var;var.insert(make_pair('a', 5));var.insert(make_pair('b', 2));var.insert(make_pair('c', 1));var.insert(make_pair('d', 6));Expression* expression = analyse(expStr);int result = expression->interpreter(var);cout << result << endl;release(expression);return 0;
}

要点总结:

Interpreter模式的应用场合式Interpreter模式的应用中的难点,只有满足“业务规则频繁变化,且类似的结构不断重复出现,并且容易抽象为语法规则的问题”才适合使用Interpreter模式。

使用Interpreter模式来表达文法规则,从而可以使用面向对象技巧来方便地“扩展”文法。

Interpreter模式比较适合简单的文法表示,对于复杂的文法表示,Interperter模式会产生比较大的类层次结构,需要求助于语法分析生成器这样的标准工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Axure教程】用中继器制作卡片多条件搜索效果

卡片设计通过提供清晰的信息结构、可视化吸引力、易扩展性和强大的交互性&#xff0c;为用户界面设计带来了许多优势&#xff0c;使得用户能够更轻松地浏览、理解和互动。 那今天就教大家如何用中继器制作卡片的模板&#xff0c;以及完成多条件搜索的效果&#xff0c;我们会以…

云原生入门系列(背景和驱动力)

做任何一件事&#xff0c;或者学习、应用一个领域的技术&#xff0c;莫过于先要想好阶段的目标和理解、学习它的意义是什么&#xff1f;解决了什么问题&#xff1f; 这部分&#xff0c;就尝试来探讨下这个阶段需要理解并达成的目标以及践行云原生的意义在哪里。 1.历程 任何阶…

【开源】基于Vue.js的衣物搭配系统的设计和实现

项目编号&#xff1a; S 016 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S016&#xff0c;文末获取源码。} 项目编号&#xff1a;S016&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…

解锁潜力:创建支持Actions接口调用的高级GPTs

如何创建带有Actions接口调用的GPTs 在本篇博客中&#xff0c;我们将介绍如何创建一个带有Actions接口调用的GPTs &#xff0c;以及如何进行配置和使用。我们将以 https://chat.openai.com/g/g-GMrQhe7ka-gptssearch 为例&#xff0c;演示整个过程。 Ps: 数据来源&#xff1a…

全网最全c++中的system详解

这篇文章是二发&#xff0c;做了些微调&#xff0c;感兴趣的朋友可以看原文&#xff1a;C中的system_一只32汪的博客-CSDN博客 1&#xff0c;简介 system()函数是在C制作中十分常用&#xff0c;有用的一个函数。 其效果类似于系统中"cmd"控制台和"bat"文件…

【nlp】2.8 注意力机制拓展

注意力机制拓展 1 注意力机制原理1.1 注意力机制示意图1.2 Attention计算过程1.3 Attention计算逻辑1.4 有无attention模型对比1.4.1 无attention机制的模型1.4.2 有attention机制的模型1 注意力机制原理 1.1 注意力机制示意图 Attention机制的工作原理并不复杂,我们可以用下…

使用持久卷部署 WordPress 和 MySQL

&#x1f5d3;️实验环境 OS名称Microsoft Windows 11 家庭中文版系统类型x64-based PCDocker版本Docker version 24.0.6, build ed223bcminikube版本v1.32.0 &#x1f587;️创建 kustomization.yaml 你可以通过 kustomization.yaml 中的生成器创建一个 Secret存储密码或密…

DBeaver安装与使用教程(超详细安装与使用教程),好用免费的数据库管理工具

&#x1f3c6;好的学习、工作从选对一个对于自己好用的软件开始。 点击目录跳转至相应目录的内容&#xff0c;更方便观看 &#x1f3c6;目录 &#x1f3c6;一、DBeaver介绍1.它支持任何具有一个JDBC驱动程序数据库&#xff0c;也可以处理任何的外部数据源。2.跨平台使用、支持…

python-opencv划痕检测-续

python-opencv划痕检测-续 这次划痕检测&#xff0c;是上一次划痕检测的续集。 处理的图像如下&#xff1a; 这次划痕检测&#xff0c;我们经过如下几步: 第一步&#xff1a;读取灰度图像 第二步&#xff1a;进行均值滤波 第三步&#xff1a;进行图像差分 第四步&#xff1…

java的包装类

目录 1. 包装类 1.1 基本数据类型和对应的包装类 1.2 装箱和拆箱 1.3 自动装箱和自动拆箱 1. 包装类 在Java中&#xff0c;由于基本类型不是继承自Object&#xff0c;为了在泛型代码中可以支持基本类型&#xff0c;Java给每个基本类型都对应了 一个包装类型。 若想了解…

抽象工厂设计模式是什么?什么是 Abstract Factory 抽象工厂设计模式?Python 抽象工厂设计模式示例代码

什么是 Abstract Factory 抽象工厂设计模式&#xff1f; 抽象工厂设计模式是一种创建型设计模式&#xff0c;旨在提供一个创建一系列相关或相互依赖对象的接口&#xff0c;而无需指定其具体类。它允许客户端使用抽象的接口创建一组相关对象&#xff0c;而无需关注实际的对象实…

[超详细]基于YOLO&OpenCV的人流量统计监测系统(源码&部署教程)

1.图片识别 2.视频识别 [YOLOv7]基于YOLO&#xff06;Deepsort的人流量统计系统(源码&#xff06;部署教程)_哔哩哔哩_bilibili 3.Deepsort目标追踪 &#xff08;1&#xff09;获取原始视频帧 &#xff08;2&#xff09;利用目标检测器对视频帧中的目标进行检测 &#xff08…

学习量化交易如何入门?

Python 量化入门很简单&#xff0c;只需 3 步就能快速上手! 题主在程序方向没有相关经验&#xff0c;今天就从量化行业的通用语言-Python 着手&#xff0c;教大家如何快速入门。 一、准备工作 在开始 Python 编程之前&#xff0c;首先需要确保你的计算机上安装了合适的 Pytho…

ros2机器人上位机与下位机连接方式(转载)

从硬件连接、通信协议和软件设计开发&#xff0c;上位机如何控制下位机&#xff1f; 由你创科技2023-09-07 10:38广东 随着科技的不断发展&#xff0c;自动化控制系统已经广泛应用于各个行业。在自动化控制系统中&#xff0c;上位机和下位机是两个重要的组成部分。上位机主要…

C语言中的函数(超详细)

C语言中的函数&#xff08;超详细&#xff09; 一、函数概述二、C语言中函数的分类1.库函数2.自定义函数三、函数的参数1.实际参数&#xff08;实参&#xff09;2.形式参数&#xff08;形参&#xff09;四、函数的调用1.传值调用2.传址调用五、函数的嵌套调用和链式访问1.嵌套调…

X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS

X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS 1. 搭建仿真线上业务环境2. 安装KeyarchOS操作系统和X2Keyarch迁移工具3. 将CentOS系统业务迁移至KeyarchOS系统 浪潮信息云峦操作系统KeyarchOS基于Linux Kernel、OpenAnolis等开源技术自主研发的一款服…

Django 入门学习总结8-管理页面的生成

修改polls/admin.py文件为&#xff1a; from django.contrib import admin from .models import Choice, Question class ChoiceInline(admin.StackedInline): model Choice extra 3 class QuestionAdmin(admin.ModelAdmin): fieldsets [ (None, {&q…

【Linux】权限的理解和使用

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;Linux &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵&#xff0c;希望大佬指点一二 如果文章对…

智能座舱架构与芯片- (15) 测试篇 下

三、持续集成与交付 3.1 自动化编译框架 在智能座舱软件中&#xff0c;分为上层应用软件和底层软件。有些上层应用软件是与指令集平台无关的&#xff0c;例如Java应用程序等&#xff0c;它们对所运行的CPU平台没有依赖性&#xff0c;可以很好的适配当前平台进行执行。而在底层…

微服务学习|初识Docker、使用Docker、自定义镜像、DockerCompose、Docker镜像仓库

初识Docker 项目部署的问题 大型项目组件较多&#xff0c;运行环境也较为复杂&#xff0c;部署时会碰到一些问题 依赖关系复杂&#xff0c;容易出现兼容性问题 开发、测试、生产环境有差异 Docker如何解决依赖的兼容问题的? 将应用的Libs (函数库)、Deps (依赖)配置与应用…