RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)

RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)

    • 摘要
    • 1 引言
    • 2 相关工作
      • 2.1 基于监督的MVS
      • 2.2 无监督和自监督MVS
      • 2.3 多视图神经渲染
    • 3 实现方法
      • 3.1 无监督的MVS网络

Chang, D. et al. (2022). RC-MVSNet: Unsupervised Multi-View Stereo with Neural Rendering. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_38
Source Code Link

摘要

(问题–方法–效果)
问题】在不同的视图之间找到准确的对应关系是无监督的多视图立体声音响(MVS)的致命弱点。现有的方法建立在相应像素具有相似光度特征的假设上。然而,在真实场景中,多视图图像观察到非兰伯表面和遭遇遮挡。【方法】在2022年8月,我们提出了一种新的神经渲染方法(RC-MVSNet)来解决这种视图间对应的模糊性问题。具体地说,我们施加深度渲染一致性损失来约束靠近对象表面的几何特征,以减少遮挡。同时,我们引入了一个参考视图合成损失,以产生一致的监督,即使对非兰伯表面。【效果】在DTU和坦克和寺庙数据集上进行的大量实验表明,我们的RC-MVSNet方法在无监督的MVS框架上取得了最先进的性能,并且与许多监督方法相比具有一定的竞争力。

1 引言

多视图立体视觉(Multi-View Stereo,MVS)是三维计算机视觉中一项长期存在的基本任务。MVS的目标是从多视点图像和相应的校准摄像机中恢复真实场景的三维点云。近年来,深度学习的广泛应用导致了端到端MVS深度估计网络的出现。一种流行的基于学习的方法MVSNet将来自不同摄像机视图的RGB信息编码为一个代价体,并预测用于点云重建的深度图。后续的全监督方法进一步改进了神经网络架构,降低了内存使用,并在几个基准测试集上具有最突出的深度估计性能。但那些方法严重依赖于监督真实的深度,这需要一个深度传感器来收集训练数据。它将这些方法限制在有限的数据集和主要的室内场景中。为了使MVS在更一般的现实场景中实用,考虑基于无监督学习的替代方法是至关重要的,这些方法可以提供与有监督的方法相比具有竞争力的精度,而不需要任何真实深度。

现有的无监督MVS方法基于光度一致性假设,该假设即属于同一三维点的像素在不同视图方向下具有相同的颜色属性。然而,在现实世界的环境中,如图2所示,遮挡,反射,非兰伯特面、不同的相机曝光和其它变量会使这种假设无效。因此,不准确匹配的点会导致错误的几何重建。虽然有学者提出使用语义线索来消除立体匹配中的歧义,但由于其高度依赖于预先训练的语义特征提取模型(带监督)的准确性,改进非常有限。为了消除与监督的不一致,在本文中,我们建议使用神经渲染来解决在视图依赖的光度效应和遮挡的情况下的模糊性

在这里插入图片描述
最近,人们对新的视图合成越来越感兴趣,特别是随着神经辐射场的引入,它可以模拟依赖的光度效应的基于可微体素渲染的视图。虽然最初关注的是使用输入密集采样视图对每个场景优化,但后续方法建议使用二维CNN编码器,即使用很少的输入图像预测新的视图。除了视图依赖辐射来定义沿视图光线的颜色外,这些方法还学习体积密度,当合成光线时,体积密度可以解释为深度。值得注意的是,深度是以一种纯粹的无监督的方式来学习的。然而,由于主要目标是新的视图合成,从体积密度获得的深度往往是不准确的。在我们的方法中,我们提出体素渲染方法构建新的损失函数,可以解决视图依赖效应和遮挡,同时沿用MVS方法中使用的深度表示,以确保局部准确和平滑的深度预测。

为此,我们引入了RC-MVSNet,一种新的端到端可微分的无监督多视图立体视觉网络。结合视图依赖渲染和结构化深度表示的优点,我们的方法在竞争激烈的DTU数据集中实现了最先进的深度预测结果,并在坦克和寺庙数据集的超范围样本上展现了鲁棒性能。综上所述,我们的贡献如下:

  • 我们提出了一种基于神经体素渲染的参考视图合成损失,以生成RGB监督,能够解释视图依赖的光度效应。
  • 我们引入高斯-均匀混合采样来学习接近物体表面的几何特征,以克服现有的无监督MVS方法中存在的遮挡伪影。
  • 我们引入了一种深度渲染一致性损失,通过深度先验来细化初始深度图,并确保预测的鲁棒性和平滑性。

2 相关工作

2.1 基于监督的MVS

许多监督方法已经提出使用CNN网络来预测RGB输入的深度图和深度图过滤来重建点云。大多数最先进的方法采用3D代价体。MVSNet作为一项具有代表性的工作,通过单应性变换将相机参数和特征编码为代价体,并通过三维CNN对体积进行正则化,以生成深度预测。之后有一些工作通过引入多阶段架构和从粗到细的方式学习深度预测,提高了MVSNet的性能和降低了内存消耗。此外,还有用卷积循环的GRU或LSTM单元代替了密集的三维卷积。然而,对真实深度的依赖限制了它们在特定数据集的应用,因此,探索无监督的方法是有必要的。

2.2 无监督和自监督MVS

端到端无监督和基于伪标签的多阶段自监督学习在三维视觉中起着关键的作用,特别是在多视图重建系统中。光度一致性的基本假设为无监督的MVS提供了可行性。例如,Unsupvised MVS提出了第一个基于端到端学习的无监督MVS框架:相邻视图用于测得深度反向变换成参考视图,并强制执行光度一致性和结构相似性(the structured similarity of image,SSIM)来最小化参考图像和变换后的图像之间的差异。JDACS提取的语义特征的交叉视图一致性,并通过非负矩阵分解对分割图进行监督。然而,它仍然需要一个预先训练的语义特征提取主干,且交叉视图语义一致性的收敛不稳定,无法提供可靠的监督。U-MVSNet采用流深一致性损失来解决有歧义的监督问题。利用密集的二维光流对应关系来生成具有不确定性感知一致性的伪标签,在一定程度上提高了监督能力。然而,这种方法不能以端到端的方式进行训练,因为它需要复杂的预训练和微调。Self-supervised CVP-MVSNet也提出通过无监督预训练出深度伪标签,然后进行迭代自监督训练来细化伪标签;但它仍然受到有歧义的监督影响。此外,这些无监督和自监督的方法缺乏一个遮挡感知模块学习来自的不同方向的特征,导致点云重建不完整。

相反,我们的简单但有效的模型通过参考视图合成损失直接学习场景的几何特征。这大大降低了训练的复杂性,并减轻了有歧义的光度监督。它还通过类似于NeRF的渲染,避免了由遮挡引起的问题。

2.3 多视图神经渲染

近年来,各种神经渲染方法被提出,主要集中于新视图合成的任务。特别是,神经辐射场用一个具有位置和方向的连续隐式函数表示场景用于高质量的视图合成;一些后续工作,提高了其效率和性能。NeRF也有一些扩展,它们引入了多视图信息,以增强视图合成的泛化能力。MVSNeRF提出利用平面扫描代价体,已广泛应用于多视图立体视觉和几何感知场景理解,并将其与体素渲染相结合,用于神经辐射场重建;然而,它不能在无监督的情况下产生高质量的深度预测NerfingMVS使用SfM的稀疏深度点来学习完整的深度来指导NeRF的优化过程我们的方法利用了精确的神经渲染和代价体的有效泛化能力,并提供了基于端到端无监督学习的精确深度估计,这超过了以往所有的无监督多视角立体视觉方法,并演示了室内对象和超范围的室外场景的精确重建。

3 实现方法

在本节中,我们描述了RC-MVSNet。给定N个图像作为输入,以及它们相应的相机的内参K和外参(R,T),我们的方法预测了在参考相机视图中的深度图。整个流程图如图3所示。
在这里插入图片描述

它由一个主干分支和一个辅助分支组成。主干建立在Cascade MVSNet基础上,它以从粗到细的方式预测深度图 。辅助分支建立在神经辐射场基础之上,除了几何图形之外,它也建模了与视图相关的场景外观。使用体素渲染,合成参考视图,并与输入图像进行比较,即使在视图依赖效应的情况下,也能产生准确的监督。为了保证网络分支之间的几何一致性,在引入了额外的深度渲染一致性损失,即使在遮挡的情况下也能获得更完整和准确的深度预测。请注意,在训练过程中,这两个分支同时进行优化,相互提供监督。在推理过程中,只使用主干网来进行深度预测。

3.1 无监督的MVS网络

主干网络密切遵循Cascade MVSNet架构。输入图像 ( I j ) j = 1 N (I_j) _{j=1}^N (Ij)j=1N最初使用一个共享的2D U-Net进行编码,从而生成像素级特征。然后,在参考相机的坐标系中构造了一个特征代价体。利用摄像机的内参和外参将每个代价体的体素位置投影到每个输入图像中,并通过双线性插值法查询像素特征。变换后的特征体 ( V j ) j = 1 N (V_j) _{j=1}^N (Vj)j=1N,通过计算特征方差,它们被跨视图融合成一个特征体C:
C = Var ⁡ ( V 1 , ⋯ , V N ) = ∑ j = 1 N ( V j − V ˉ j ) 2 N ( 1 ) C=\operatorname{Var}\left(V_1, \cdots, V_N\right)=\frac{\sum_{j=1}^N\left(V_j-\bar{V}_j\right)^2}{N}~~~~(1) C=Var(V1,,VN)=Nj=1N(VjVˉj)2    (1)
使用3D U-Net进一步细化了特征代价体C,最后以从粗到细的方式在参考视图中输出一个深度图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202746.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode面试经典150题——32 串联所有单词的子串(中等+困难)

题目: 串联所有单词的子串(1中等) 描述: 给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。 异位词 指由相同字母重排列形成的字符串(包括相同的字符串&…

Linux 命令vim(编辑器)

(一)vim编辑器的介绍 vim是文件编辑器,是vi的升级版本,兼容vi的所有指令,同时做了优化和延伸。vim有多种模式,其中常用的模式有命令模式、插入模式、末行模式:。 (二)vim编辑器基本操作 1 进入vim编辑文件 1 vim …

百度智能云正式上线Python SDK版本并全面开源

文章目录 前言一、SDK的优势二、千帆SDK:快速落地LLM应用三、如何快速上手千帆SDK3.1、SDK快速启动3.2. SDK进阶指引 3.3. 通过Langchain接入千帆SDK4、开源社区 前言 百度智能云千帆大模型平台再次升级!在原有API基础上,百度智能云正式上线…

单链表原来是这样实现的!

文章目录 前言1. 链表的概念及结构1.1在链表里,每节“车厢”是什么样的呢?1.2为什么还需要指针变量来保存下⼀个节点的位置? 2. 单链表的实现1. 定义结构体(Seqlist)2. 打印函数(SLTPrint)小插曲,创建节点函数CreateNode3. 尾插函…

Qt 串口编程-从入门到实战

1. Qt 串口通信流程解析 1.1 串行通信和并行通信对比 并行通信适合距离较短的通信,且信号容易受干扰,成本高串口通讯-设备(蓝牙, wifi, gprs, gps) 1.2 Qt 串口通信具体流程 1. 创建 QSerial…

学习Pandas 二(Pandas缺失值处理、数据离散化、合并、交叉表与透视表、分组与聚合)

文章目录 六、高级处理-缺失值处理6.1 检查是否有缺失值6.2 缺失值处理6.3 不是缺失值NaN,有默认标记的 七、高级处理-数据离散化7.1 什么是数据的离散化7.2 为什么要离散化7.3 如何实现数据的离散化 八、高级处理-合并8.1 pc.concat实现合并,按方向进行…

面试常见问题:什么是进程? 什么是线程?进程和线程有什么区别?

1.什么是进程? 进程是操作系统中一个程序在执行过程中的一个实例,每个进程都有自己独立的地址空间,进程间不共享内存。它是程序运行的最小内存单元; 进程特点: 1> 需要占用独立的内存空间; 2>可以并…

2023年最新PyCharm安装详细教程及pycharm配置

目录 一、PyCharm简介及其下载网站 二、单击网站的Downloads,进入二级页面,选择对应的操作系统下载PyCharm 三、PyCharm的安装程序的安装及其配置(configuration) 1、运行PyCharm Setup 2、安装位置设置 3、安装选项设置 4、开始菜单中PyCharm快捷方式的…

【前沿技术了解】web图形Canvas、svg、WebGL、数据可视化引擎的技术选型

目录 Canvas:HTML5新增 Canvas标签(画布) 渲染上下文canvas.getContext(contextType[, contextAttributes]) 上下文类型(contextType) 上下文属性 (contextAttributes) 示例 动画 setInterval(function, delay)…

ElasticSearch02

ElasticSearch客户端操作 ElasticSearch 版本:7.8 学习视频:尚硅谷 笔记:https://zgtsky.top/ 实际开发中,主要有三种方式可以作为elasticsearch服务的客户端: 第一种,使用elasticsearch提供的Restful接口…

从0到1建立前端规范

本文适合打算建立前端规范的小伙伴阅读 一、为什么需要规范 规范能给我们带来什么好处,如果没有规范会造成什么后果?这里主要拿代码规范来说。 统一代码规范的好处: 提高代码整体的可读性、可维护性、可复用性、可移植性和可靠性&#xf…

Ubuntu 22.04.3编译AOSP13刷机

文章目录 设备信息下载AOSP并切换分支获取设备驱动编译系统编译遇到的问题Cannot allocate memoryUbuntu设置USB调试刷机参考链接 设备信息 手机:Pixel 4XL 下载AOSP并切换分支 在清华大学开源软件镜像站下载初始化包aosp-latest.tar。 解压缩,切换到…

Hexo 还是 Hugo?Typecho 还是 Wordpress?读完这篇或许你就有答案了!

Hexo 首先介绍的是 Hexo,这也是咕咕没买服务器之前折腾的第一个博客。 演示站点:https://yirenliu.cn 用的主题是 butterfly,想当年刚用的时候,作者还没建群,现在 qq 群都有上千人了,GitHub 上的星星数量也有 2.7k 了。 优点 如果你不想买服务器,但也想折腾一个博客,…

【Web-Note】 JavaScript概述

JavaSript基本语法 JavaSript程序不能独立运行&#xff0c;必须依赖于HTML文件。 <script type "text/javascript" [src "外部文件"]> JS语句块; </script> script标记是成对标记。 type属性&#xff1a;说明脚本的类型。 "text/jav…

【全栈开发】RedwoodJS与BlitzJS:全栈JavaScript元框架的未来

Redwood和Blitz是两个即将出现的全栈元框架&#xff0c;它们提供了创建SPAs、服务器端渲染页面和静态生成内容的工具&#xff0c;并提供了生成端到端支架的CLI。我一直在等待一个有价值的Rails JavaScript替代品&#xff0c;谁知道什么时候。这篇文章是对两者的概述&#xff0c…

【C++】:拷贝构造函数与赋值运算符重载的实例应用之日期类的实现

C实现日期类 ├─属性&#xff1a; │ ├─年份 │ ├─月份 │ └─日期 ├─方法&#xff1a; │ ├─构造函数 │ ├─拷贝构造函数 │ ├─析构函数 │ ├─设置年份 │ ├─设置月份 │ ├─设置日期 │ ├─获取年份 │ ├─获取月份 │ ├─获取日期 │ ├…

HTML新特性【缩放图像、图像切片、平移、旋转、缩放、变形、裁切路径、时钟、运动的小球】(二)-全面详解(学习总结---从入门到深化)

目录 绘制图像_缩放图像 绘制图像_图像切片 Canvas状态的保存和恢复 图形变形_平移 图形变形_旋转 图形变形_缩放 图形变形_变形 裁切路径 动画_时钟 动画_运动的小球 引入外部SVG 绘制图像_缩放图像 ctx.drawImage(img, x, y, width, height) img &#xf…

C# 使用NPOI操作Excel的工具类

写在前面 NPOI是POI项目的.NET迁移版本。POI是一个开源的Java 读写 Excel、Word 等微软Ole2组件文档的项目&#xff1b;使用NPOI可以在没有安装Office或者相应环境的机器上对Word或Excel文档进行读写操作。 NPOI类库中操作EXCEL有两个模块分别是&#xff1a; 1️.HSSF模块&a…

Spring Beans;Spring Bean的生命周期;spring Bean的作用域,spring处理线程并发问题

文章目录 Spring Beans请解释Spring Bean的生命周期解释Spring支持的几种bean的作用域Spring容器中的bean可以分为5个范围&#xff1a; Spring如何处理线程并发问题&#xff1f; 在现在的项目开发中经常使用到spring bean&#xff0c;那么来谈谈spring bean的生命周期&#xff…

Lua脚本解决redis实现的分布式锁多条命令原子性问题

线程1现在持有锁之后&#xff0c;在执行业务逻辑过程中&#xff0c;他正准备删除锁&#xff0c;而且已经走到了条件判断的过程中&#xff0c;比如他已经拿到了当前这把锁确实是属于他自己的&#xff0c;正准备删除锁&#xff0c;但是此时他的锁到期了&#xff0c;那么此时线程2…