机器学习8:在病马数据集上进行算法比较(ROC曲线与AUC)

ROC曲线与AUC。使用不同的迭代次数(基模型数量)进行 Adaboost 模型训练,并记录每个模型的真阳性率和假阳性率,并绘制每个模型对应的 ROC 曲线,比较模型性能,输出 AUC 值最高的模型的迭代次数和 ROC 曲线。

使用Python的scikit-learn库来训练Adaboost模型,并记录每个模型的真阳性率和假阳性率,并绘制每个模型对应的ROC曲线。然后比较模型性能,并输出AUC值最高的模型的迭代次数和ROC曲线。

 下面是一个示例代码,用于在病马数据集上进行Adaboost模型的训练、绘制ROC曲线和计算AUC值:

如果你的是csv文件

import numpy as np
import pandas as pd
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 加载数据集,这里假设数据已经存储在名为data的DataFrame中
# 请根据实际情况修改加载数据集的代码
data = pd.read_csv('your_dataset.csv')# 假设数据集中最后一列为标签,其余列为特征
X = data.iloc[:, :-1]
y = data.iloc[:, -1]# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 初始化基模型数量列表和对应的AUC值列表
n_estimators_list = [50, 100, 150, 200]
auc_list = []# 训练Adaboost模型,并计算每个模型的AUC值
for n_estimators in n_estimators_list:ada_model = AdaBoostClassifier(n_estimators=n_estimators, random_state=42)ada_model.fit(X_train, y_train)y_score = ada_model.decision_function(X_test)fpr, tpr, thresholds = roc_curve(y_test, y_score)roc_auc = auc(fpr, tpr)auc_list.append(roc_auc)# 绘制ROC曲线plt.plot(fpr, tpr, label='n_estimators = %d, AUC = %0.2f' % (n_estimators, roc_auc))# 找到AUC值最高的模型的迭代次数
best_n_estimators = n_estimators_list[np.argmax(auc_list)]# 设置图形参数
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve for Adaboost Model')
plt.legend(loc='lower right')
plt.show()# 输出AUC值最高的模型的迭代次数和ROC曲线
print("AUC值最高的模型的迭代次数:", best_n_estimators)

在病马数据集上进行算法比较(ROC曲线与AUC)

  1. 使用不同的迭代次数(基模型数量)进行 Adaboost 模型训练,并记录每个模型的真阳性率和假阳性率,并绘制每个模型对应的 ROC 曲线,比较模型性能,输出 AUC 值最高的模型的迭代次数和 ROC 曲线。
  2. 计算不同基模型数量下的AUC值,画出“分类器个数-AUC”关系图
  3. 讨论:随着弱分类器个数的增加,AUC的值会如何变化?为什么?如果AUC值随着弱分类器的增加而增加,是否表示弱分类器个数越多越好呢?
  4. 我们能否根据AUC的曲线图找到最优的弱分类器个数?怎么找?

数据集是horseColicTest.txt和horseColicTraining.txt,不是csv文件

使用不同的迭代次数(基模型数量)进行 Adaboost 模型训练,并记录每个模型的真阳性率和假阳性率,并绘制每个模型对应的 ROC 曲线,比较模型性能,输出 AUC 值最高的模型的迭代次数和 ROC 曲线。

import numpy as np
import pandas as pd
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 加载训练集和测试集
train_data = pd.read_csv('horseColicTraining.txt', delimiter='\t', header=None)
test_data = pd.read_csv('horseColicTest.txt', delimiter='\t', header=None)# 假设数据集中最后一列为标签,其余列为特征
X_train = train_data.iloc[:, :-1]
y_train = train_data.iloc[:, -1]
X_test = test_data.iloc[:, :-1]
y_test = test_data.iloc[:, -1]# 初始化基模型数量列表和对应的AUC值列表
n_estimators_list = [50, 100, 150, 200]
auc_list = []# 训练Adaboost模型,并计算每个模型的AUC值
for n_estimators in n_estimators_list:ada_model = AdaBoostClassifier(n_estimators=n_estimators, random_state=42)ada_model.fit(X_train, y_train)y_score = ada_model.decision_function(X_test)fpr, tpr, thresholds = roc_curve(y_test, y_score)roc_auc = auc(fpr, tpr)auc_list.append(roc_auc)# 绘制ROC曲线plt.plot(fpr, tpr, label='n_estimators = %d, AUC = %0.2f' % (n_estimators, roc_auc))# 找到AUC值最高的模型的迭代次数
best_n_estimators = n_estimators_list[np.argmax(auc_list)]# 设置图形参数
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve for Adaboost Model')
plt.legend(loc='lower right')
plt.show()# 输出AUC值最高的模型的迭代次数和ROC曲线
print("AUC值最高的模型的迭代次数:", best_n_estimators)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/203959.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【传智杯】儒略历、评委打分、萝卜数据库题解

🍎 博客主页:🌙披星戴月的贾维斯 🍎 欢迎关注:👍点赞🍃收藏🔥留言 🍇系列专栏:🌙 蓝桥杯 🌙请不要相信胜利就像山坡上的蒲公英一样唾手…

Vue框架学习笔记——事件scroll和wheel的区别

文章目录 前文提要滚动条滚动事件 scroll鼠标滚动事件 wheel二者不同点 前文提要 本人仅做个人学习记录,如有错误,请多包涵 滚动条滚动事件 scroll scroll事件绑定html页面中的指定滚动条,无论你拖拽滚动条,选中滚动条之后按键盘…

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络(CNN)中一般在卷积层(conv)之后使用的特征提取层,使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度,一方面增加了特征的整合度…

揭秘周杰伦《最伟大的作品》MV,绝美UI配色方案竟然藏在这里

色彩在UI设计的基本框架中占据着举足轻重的位置。实际上,精心挑选和组合的色彩配色,往往就是UI设计成功的不二法门。在打造出一个实用的UI配色方案过程中,我们需要有坚实的色彩理论知识,同时还需要擅于从生活中观察和提取灵感。以…

C++进阶篇5---番外-位图和布隆过滤器

哈希的应用 一、位图 情景:给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中??? 看到查找元素的范围,暴力肯定是过不了的,我们要么…

windows搭建gitlab教程

1.安装gitlab 说明:由于公司都是windows服务器,这里安装以windows为例,先安装一个虚拟机,然后安装一个docker(前提条件) 1.1搜索镜像 docker search gitlab #搜索所有的docker search gitlab-ce-zh #搜索…

【OpenCV实现图像:使用OpenCV进行物体轮廓排序】

文章目录 概要读取图像获取轮廓轮廓排序小结 概要 在图像处理中,经常需要进行与物体轮廓相关的操作,比如计算目标轮廓的周长、面积等。为了获取目标轮廓的信息,通常使用OpenCV的findContours函数。然而,一旦获得轮廓信息后&#…

Redis跳跃表

前言 跳跃表(skiplist)是一种有序数据结构,它通过在每一个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。 跳跃表支持平均O(logN),最坏O(N),复杂度的节点查找,还可以通过顺序性来批量处理节点…

城市管理实景三维:打造智慧城市的新引擎

城市管理实景三维:打造智慧城市的新引擎 在城市管理领域,实景三维技术正逐渐成为推动城市发展的新引擎。通过以精准的数字模型呈现城市真实场景,实景三维技术为城市决策提供了全新的思路和工具。从规划设计到交通管理,从环境保护到…

HOOPS Web平台助力开发3D应用,实现超大规模3D web轻量化渲染与数据格式转换!

一、包含的软件开发工具包 HOOPS Web平台帮助开发人员构建基于Web的工程应用程序,提供高级3D Web可视化、准确快速的CAD数据访问和3D数据发布。 HOOPS Web平台包括三个集成软件开发工具包 (SDK): (1)Web端3D可视化引擎 HOOPSCom…

五子棋游戏

import pygame #导入pygame模块 pygame.init()#初始化 screen pygame.display.set_mode((750,750))#设置游戏屏幕大小 running True#建立一个事件 while running:#事件运行for event in pygame.event.get():if event.type pygame.QUIT:#当点击事件后退出running False #事…

什么是神经网络(Neural Network,NN)

1 定义 神经网络是一种模拟人类大脑工作方式的计算模型,它是深度学习和机器学习领域的基础。神经网络由大量的节点(或称为“神经元”)组成,这些节点在网络中相互连接,可以处理复杂的数据输入,执行各种任务…

【蓝桥杯】刷题

刷题网站 记录总结刷题过程中遇到的一些问题 1、最大公约数与最小公倍数 a,bmap(int,input().split())sa*bwhile a%b:a,bb,a%bprint(b,s//b)2.迭代法求平方根(题号1021) #include<stdio.h> #include<math.h> int main() {double x11.0,x2;int a;scanf("%d&…

Self-Supervised Exploration via Disagreement论文笔记

通过分歧进行自我监督探索 0、问题 使用可微的ri直接去更新动作策略的参数的&#xff0c;那是不是就不需要去计算价值函数或者critic网络了&#xff1f; 1、Motivation 高效的探索是RL中长期存在的问题。以前的大多数方式要么陷入具有随机动力学的环境&#xff0c;要么效率…

C++之模版初阶(简单使用模版)

前言 在学习C的模版之前&#xff0c;咱们先来说一说模版的概念&#xff0c;模版在我们的日常生活中非常常见&#xff0c;比如我们要做一个ppt&#xff0c;我们会去在WPS找个ppt的模版&#xff0c;我们只需要写入内容即可&#xff1b;比如我们的数学公式&#xff0c;给公式套值&…

Linux:配置Ubuntu系统的镜像软件下载地址

一、原理介绍 好处&#xff1a;从国内服务器下载APT软件&#xff0c;速度快。 二、配置 我这里配置的是清华大学的镜像服务器地址 https://mirrors.tuna.tsinghua.edu.cn/ 1、备份文件 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak2、清空sources.list ec…

软件测评中心进行安全测试有哪些流程?安全测试报告如何收费?

在当今数字化时代&#xff0c;软件安全测试是每个软件开发团队都不能忽视的重要环节。安全测试是指对软件产品进行系统、全面的安全性评测与检测的过程。它旨在发现并修复软件中存在的漏洞和安全隐患&#xff0c;以确保软件能够在使用过程中保护用户的数据和隐私不被非法访问和…

RabbitMQ 的网页界面操作说明

启动 上面给用户添加了角色和权限&#xff0c; 我们就可以登录了 先手动创建两个队列&#xff0c;然后再把这两个队列和交换机绑定&#xff0c;就可以发布消息 回到队列中看看有什么变化 队列中显示绑定了交换机 再看一下队列中发生的变化 可以看到队列中收到了信息

gitlab

Gitlab 安装git yum安装 [rootgit ~]# yum -y install git编译安装 Git官网 #安装依赖关系 [rootgit ~]# yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel autoconf gcc perl-ExtUtils-MakeMaker # 编译安装 [rootgit ~]# tar -zxf git-2.0…

【算法】FFT-1(递归实现)(不包括IFFT)

FFT 多项式多项式乘法复数及运算导数泰勒公式及展开式欧拉公式单位根 FFTCode IFFT 多项式 我们从课本中可以知道&#xff0c;一个 n − 1 n-1 n−1 次的多项式可以写成 a 0 a 1 x a 2 x 2 a 3 x 3 ⋯ a n − 1 x n − 1 a_{0}a_{1}xa_{2}x^2a_{3}x^3\dotsa_{n-1}x^{n-…