卷积神经网络(CNN)识别验证码

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
    • 4.标签数字化
  • 二、构建一个tf.data.Dataset
    • 1.预处理函数
    • 2.加载数据
    • 3.配置数据
  • 三、搭建网络模型
  • 四、编译
  • 五、训练
  • 六、模型评估
  • 七、保存和加载模型
  • 八、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,random,pathlib# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)
data_dir = "code"
data_dir = pathlib.Path(data_dir)all_image_paths = list(data_dir.glob('*'))
all_image_paths = [str(path) for path in all_image_paths]# 打乱数据
random.shuffle(all_image_paths)# 获取数据标签
all_label_names = [path.split("\\")[5].split(".")[0] for path in all_image_paths]image_count = len(all_image_paths)
print("图片总数为:",image_count)

3. 查看数据

plt.figure(figsize=(10,5))for i in range(20):plt.subplot(5,4,i+1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片images = plt.imread(all_image_paths[i])plt.imshow(images)# 显示标签plt.xlabel(all_label_names[i])plt.show()

在这里插入图片描述

4.标签数字化

number   = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
char_set       = number + alphabet
char_set_len   = len(char_set)
label_name_len = len(all_label_names[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in all_label_names]

二、构建一个tf.data.Dataset

1.预处理函数

def preprocess_image(image):image = tf.image.decode_jpeg(image, channels=1)image = tf.image.resize(image, [50, 200])return image/255.0def load_and_preprocess_image(path):image = tf.io.read_file(path)return preprocess_image(image)

2.加载数据

构建 tf.data.Dataset 最简单的方法就是使用 from_tensor_slices 方法。

AUTOTUNE = tf.data.experimental.AUTOTUNEpath_ds  = tf.data.Dataset.from_tensor_slices(all_image_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
image_label_ds
<ZipDataset shapes: ((50, 200, 1), (5, 36)), types: (tf.float32, tf.float64)>
train_ds = image_label_ds.take(1000)  # 前1000个batch
val_ds   = image_label_ds.skip(1000)  # 跳过前1000,选取后面的

3.配置数据

先复习一下prefetch()函数。prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

BATCH_SIZE = 16train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds

三、搭建网络模型

from tensorflow.keras import datasets, layers, modelsmodel = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 200, 1)),#卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Flatten(),                              #Flatten层,连接卷积层与全连接层layers.Dense(1000, activation='relu'),         #全连接层,特征进一步提取layers.Dense(label_name_len * char_set_len),layers.Reshape([label_name_len, char_set_len]),layers.Softmax()                               #输出层,输出预期结果
])
# 打印网络结构
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 48, 198, 32)       320       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 24, 99, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 22, 97, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 11, 48, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 33792)             0         
_________________________________________________________________
dense (Dense)                (None, 1000)              33793000  
_________________________________________________________________
dense_1 (Dense)              (None, 180)               180180    
_________________________________________________________________
reshape (Reshape)            (None, 5, 36)             0         
_________________________________________________________________
softmax (Softmax)            (None, 5, 36)             0         
=================================================================
Total params: 33,991,996
Trainable params: 33,991,996
Non-trainable params: 0
_________________________________________________________________

四、编译

model.compile(optimizer="adam",loss='categorical_crossentropy',metrics=['accuracy'])

五、训练

epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
63/63 [==============================] - 4s 21ms/step - loss: 3.2998 - accuracy: 0.0934 - val_loss: 2.2876 - val_accuracy: 0.2943
Epoch 2/20
63/63 [==============================] - 1s 9ms/step - loss: 1.7016 - accuracy: 0.5195 - val_loss: 1.2014 - val_accuracy: 0.6314
Epoch 3/20
63/63 [==============================] - 1s 10ms/step - loss: 0.5267 - accuracy: 0.8379 - val_loss: 0.9039 - val_accuracy: 0.7286
Epoch 4/20
63/63 [==============================] - 1s 10ms/step - loss: 0.1911 - accuracy: 0.9442 - val_loss: 0.8609 - val_accuracy: 0.7457
Epoch 5/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0916 - accuracy: 0.9714 - val_loss: 0.8937 - val_accuracy: 0.7886
Epoch 6/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0680 - accuracy: 0.9798 - val_loss: 0.5842 - val_accuracy: 0.8429
Epoch 7/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0443 - accuracy: 0.9900 - val_loss: 0.6235 - val_accuracy: 0.8200
Epoch 8/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0203 - accuracy: 0.9947 - val_loss: 0.7697 - val_accuracy: 0.8029
Epoch 9/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0131 - accuracy: 0.9975 - val_loss: 0.6660 - val_accuracy: 0.8314
Epoch 10/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0227 - accuracy: 0.9940 - val_loss: 0.6018 - val_accuracy: 0.8229
Epoch 11/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0093 - accuracy: 0.9985 - val_loss: 0.5714 - val_accuracy: 0.8429
Epoch 12/20
63/63 [==============================] - 1s 10ms/step - loss: 0.0010 - accuracy: 1.0000 - val_loss: 0.5793 - val_accuracy: 0.8571
Epoch 13/20
63/63 [==============================] - 1s 10ms/step - loss: 2.6284e-04 - accuracy: 1.0000 - val_loss: 0.5920 - val_accuracy: 0.8571
Epoch 14/20
63/63 [==============================] - 1s 10ms/step - loss: 1.8502e-04 - accuracy: 1.0000 - val_loss: 0.6031 - val_accuracy: 0.8571
Epoch 15/20
63/63 [==============================] - 1s 10ms/step - loss: 1.4164e-04 - accuracy: 1.0000 - val_loss: 0.6120 - val_accuracy: 0.8571
Epoch 16/20
63/63 [==============================] - 1s 10ms/step - loss: 1.1334e-04 - accuracy: 1.0000 - val_loss: 0.6198 - val_accuracy: 0.8571
Epoch 17/20
63/63 [==============================] - 1s 10ms/step - loss: 9.4027e-05 - accuracy: 1.0000 - val_loss: 0.6269 - val_accuracy: 0.8571
Epoch 18/20
63/63 [==============================] - 1s 10ms/step - loss: 8.0025e-05 - accuracy: 1.0000 - val_loss: 0.6335 - val_accuracy: 0.8514
Epoch 19/20
63/63 [==============================] - 1s 9ms/step - loss: 6.9294e-05 - accuracy: 1.0000 - val_loss: 0.6396 - val_accuracy: 0.8486
Epoch 20/20
63/63 [==============================] - 1s 10ms/step - loss: 6.0775e-05 - accuracy: 1.0000 - val_loss: 0.6448 - val_accuracy: 0.8486

六、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

七、保存和加载模型

# 保存模型
model.save('model/12_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/12_model.h5')

八、预测

def vec2text(vec):"""还原标签(向量->字符串)"""text = []for i, c in enumerate(vec):text.append(char_set[c])return "".join(text)plt.figure(figsize=(10, 8))            # 图形的宽为10高为8for images, labels in val_ds.take(1):for i in range(6):ax = plt.subplot(5, 2, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测验证码predictions = model.predict(img_array)plt.title(vec2text(np.argmax(predictions, axis=2)[0]))plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/203972.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows下Linkis1.5DSS1.1.2本地调试

1 Linkis: 参考&#xff1a; 单机部署 | Apache Linkis技术分享 | 在本地开发调试Linkis的源码 (qq.com)DataSphere Studio1.0本地调试开发指南 - 掘金 (juejin.cn) 1.1 后端编译 参考【后端编译 | Apache Linkis】】 修改linkis模块下pom.xml,将mysql.connetor.scope修改…

基于命令行模式设计退款请求处理

前言 这篇文章的业务背景是基于我的另一篇文章: 对接苹果支付退款退单接口-CSDN博客 然后就是说设计模式是很开放的东西,可能我觉得合适,你可能觉得不合适,这里只是做下讨论,没有一定要各位同意的意思.... 相关图文件 这里我先把相关的图文件放上来,可能看着会比较清晰点 代码逻…

从零开始的c语言日记day37——数组指针练习

一、 取地址数组储存在了*p里&#xff0c;里面储存的是整个数组的地址但本质也是第一个元素的地址解引用后1为4个字节所以就可以打印数组了。但一般不用这种方法 这样更方便一些 打印多维数组 如果不用这样传参&#xff0c;用指针传参怎么做呢&#xff1f; Main里函数的arr表示…

第1章 爬虫基础

目录 1. HTTP 基本原理1.1 URI 和 URL1.2 HTTP 和 HTTPS1.3 请求1.3.1 请求方法1.3.2 请求的网址1.3.3 请求头1.3.4 请求体 1.4 响应1.4.1 响应状态码1.4.2 响应头1.4.3 响应体 2. Web 网页基础2.1 网页的组成2.1.1 HTML2.1.2 CSS2.1.3 JavaScript 2.2 网页的结构2.3 节点树及节…

windows上 adb devices有设备 wsl上没有

终于解决了&#xff01;&#xff01;&#xff01;&#xff01; TAT&#xff0c;尝试了很多种办法。 比如WSL中的adb和Windows中的adb版本必须一致&#xff0c;一致也没用&#xff0c;比如使用 ln 建立链接也没用。 这个解决办法的前提是windows中的abd是好用的。 ●在windows…

JSP:JDBC

JDBC&#xff08;Java Data Base Connectivity的缩写&#xff09;是Java程序操作数据库的API&#xff0c;也是Java程序与数据库相交互的一门技术。 JDBC是Java操作数据库的规范&#xff0c;由一组用Java语言编写的类和接口组成&#xff0c;它对数据库的操作提供基本方法&#…

anaconda换源安装pytorch(附带bug解决办法)

1.安装anaconda 如何安装anaconda可以看这篇文章:如何安装anaconda 2.换源安装pytorch: 首先进入到pytorch官网&#xff0c;选对好参数之后复制命令进入到anaconda prompt即可: 然后进入自己的环境之后输入该命令(即conda install …)&#xff0c;则可以进行下载。下载完成…

pandas教程:USDA Food Database USDA食品数据库

文章目录 14.4 USDA Food Database&#xff08;美国农业部食品数据库&#xff09; 14.4 USDA Food Database&#xff08;美国农业部食品数据库&#xff09; 这个数据是关于食物营养成分的。存储格式是JSON&#xff0c;看起来像这样&#xff1a; {"id": 21441, &quo…

入侵redis之准备---Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制

入侵redis之准备—Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制 几点需要知道的信息 【1】crontab一般来说服务器都是有的&#xff0c;依赖crond服务&#xff0c;这个服务也是必须安装的服务&#xff0c;并且也是开机自启动的服务&#xff0c;也就是说&…

C语言做一个恶作剧关机程序

一、项目介绍 C语言实现一个简单的"流氓软件"&#xff0c;一个可以强制关机恶作剧关机程序&#xff0c;输入指定指令可以解除 二、运行截图 然后当你输入“n”才可以解锁关机。 三、完整源码 #include <stdlib.h> #include <stdio.h> #include <s…

机器学习8:在病马数据集上进行算法比较(ROC曲线与AUC)

ROC曲线与AUC。使用不同的迭代次数&#xff08;基模型数量&#xff09;进行 Adaboost 模型训练&#xff0c;并记录每个模型的真阳性率和假阳性率&#xff0c;并绘制每个模型对应的 ROC 曲线&#xff0c;比较模型性能&#xff0c;输出 AUC 值最高的模型的迭代次数和 ROC 曲线。 …

【传智杯】儒略历、评委打分、萝卜数据库题解

&#x1f34e; 博客主页&#xff1a;&#x1f319;披星戴月的贾维斯 &#x1f34e; 欢迎关注&#xff1a;&#x1f44d;点赞&#x1f343;收藏&#x1f525;留言 &#x1f347;系列专栏&#xff1a;&#x1f319; 蓝桥杯 &#x1f319;请不要相信胜利就像山坡上的蒲公英一样唾手…

Vue框架学习笔记——事件scroll和wheel的区别

文章目录 前文提要滚动条滚动事件 scroll鼠标滚动事件 wheel二者不同点 前文提要 本人仅做个人学习记录&#xff0c;如有错误&#xff0c;请多包涵 滚动条滚动事件 scroll scroll事件绑定html页面中的指定滚动条&#xff0c;无论你拖拽滚动条&#xff0c;选中滚动条之后按键盘…

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络&#xff08;CNN&#xff09;中一般在卷积层&#xff08;conv&#xff09;之后使用的特征提取层&#xff0c;使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度&#xff0c;一方面增加了特征的整合度…

揭秘周杰伦《最伟大的作品》MV,绝美UI配色方案竟然藏在这里

色彩在UI设计的基本框架中占据着举足轻重的位置。实际上&#xff0c;精心挑选和组合的色彩配色&#xff0c;往往就是UI设计成功的不二法门。在打造出一个实用的UI配色方案过程中&#xff0c;我们需要有坚实的色彩理论知识&#xff0c;同时还需要擅于从生活中观察和提取灵感。以…

C++进阶篇5---番外-位图和布隆过滤器

哈希的应用 一、位图 情景&#xff1a;给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无符号整数&#xff0c;如何快速判断一个数是否在这40亿个数中&#xff1f;&#xff1f;&#xff1f; 看到查找元素的范围&#xff0c;暴力肯定是过不了的&#xff0c;我们要么…

windows搭建gitlab教程

1.安装gitlab 说明&#xff1a;由于公司都是windows服务器&#xff0c;这里安装以windows为例&#xff0c;先安装一个虚拟机&#xff0c;然后安装一个docker&#xff08;前提条件&#xff09; 1.1搜索镜像 docker search gitlab #搜索所有的docker search gitlab-ce-zh #搜索…

【OpenCV实现图像:使用OpenCV进行物体轮廓排序】

文章目录 概要读取图像获取轮廓轮廓排序小结 概要 在图像处理中&#xff0c;经常需要进行与物体轮廓相关的操作&#xff0c;比如计算目标轮廓的周长、面积等。为了获取目标轮廓的信息&#xff0c;通常使用OpenCV的findContours函数。然而&#xff0c;一旦获得轮廓信息后&#…

Redis跳跃表

前言 跳跃表(skiplist)是一种有序数据结构&#xff0c;它通过在每一个节点中维持多个指向其他节点的指针&#xff0c;从而达到快速访问节点的目的。 跳跃表支持平均O(logN)&#xff0c;最坏O(N)&#xff0c;复杂度的节点查找&#xff0c;还可以通过顺序性来批量处理节点…

城市管理实景三维:打造智慧城市的新引擎

城市管理实景三维&#xff1a;打造智慧城市的新引擎 在城市管理领域&#xff0c;实景三维技术正逐渐成为推动城市发展的新引擎。通过以精准的数字模型呈现城市真实场景&#xff0c;实景三维技术为城市决策提供了全新的思路和工具。从规划设计到交通管理&#xff0c;从环境保护到…