人工智能|机器学习——机器学习如何判断模型训练是否充分

一、查看训练日志

训练日志是机器学习中广泛使用的训练诊断工具,每个 epoch 或 iterator 结束后,在训练集和验证集上评估模型,并以折线图的形式显示模型性能和收敛状况。训练期间查看模型的训练日志可用于判断模型训练时的问题,例如欠拟合或过拟合,以及训练和验证数据集是否合适等问题,为后续模型调优的参数设置提供了基础。 SuperMap 使用 tensorboard 记录训练时的日志,如需查看训练日志,可在系统命令行窗口输入:

tensorboard --logdir={日志路径}
如:
tensorboard --logdir=/home/city_grid/log/2020-12-04/image_classification

执行后,浏览器中访问 http://localhost:6006/,效果如图所示:

在这里插入图片描述

【注】使用 tensorboard 之前要保证命令行环境中 SuperMap iObjects Python Env(conda)可用,需配置 conda 到环境变量中,如windows:

E:\ProgramData\conda
E:\ProgramData\conda\Scripts
E:\ProgramData\conda\Library\bin
【注】需更改为本机路径

二、根据训练日志和指标得到较优模型

训练日志中的 y 轴经常为不同的评估指标,用以表示模型的性能,常用的有 loss、 Accuracy、IoU和mAP等。IoU是二元分类、地物分类等问题常用的评价指标,而mAP常用于评估目标检测模型的效果。在实际应用中,我们通常结合多种评估指标来综合评价模型的性能。


模型性能评估可以在训练数据集上进行,以了解模型的“学习”情况;也可以在验证集上进行,以了解模型的“泛化”能力。因此我们需要同时关注模型在训练集和验证集上的表现。

2.1 欠拟合

欠拟合表明模型没有充分学习训练数据集的特征,表明训练过程过早停止且该模型如进一步训练其性能可得到提升。在训练日志上(以 loss 为例),欠拟合一般有两种典型表现。它可能会显示一条趋于水平或维持相对较高 loss 值的水平曲线(如下图所示),表明模型无法学习训练集中足够的信息。这个时候可以考虑增加模型的复杂程度,通过增加隐藏层的数量来提升模型的学习能力

在这里插入图片描述

欠拟合状况也可通过训练结束时 loss 仍持续减少来识别。从下图可以看出,在训练结束时(epoch=9)模型在测试集上的 loss 持续下降并仍有下降的余地;而模型在验证集上的 loss 仍有较大波动,说明模型没有收敛。这时可增大 epoch 数量直到模型性能不再提升(可添加早停策略);如果需要很长时间才能达到验证集曲线上的最小值,可适当提高学习率加快梯度下降速度。


在这里插入图片描述2.2 过拟合

过拟合是指模型对训练数据集学习得“过”好,甚至学习到了训练集中的噪声或随机的错误信息。过拟合的问题在于模型对训练集上有较好的效果,但对新数据的泛化能力较差。这种泛化误差的增加可以通过模型在验证集上的性能来衡量。以 IoU 为例,过拟合情况在训练日志上可表示为训练集上 IoU 随着经验的增加而继续增加,同时验证集的 IoU 上升到一个点并开始再次降低,这个拐点可能是训练停止的点,因为该点之后的模型为过拟合状态。如下图所示,可以看到在训练集上模型性能逐步上升;而在验证集上,模型的精度在 30 个 epoch 之后就开始下降,模型开始出现过拟合。

在这里插入图片描述

如果过早过拟合并具有尖锐倒“U”形,除数据自身问题外还可能是由于学习率过大,可根据模型学习的速度适当调小学习率,并观察验证集上的拐点找到合适的 epoch大小。

2.3 模型收敛

模型收敛是训练的目标,以 loss 作为评价指标为例,模型收敛的训练日志情况应该是训练集上 loss 下降到稳定点,验证集上 loss 下降到稳定点,且两者的泛化差距很小(在理想情况下几乎为零)。泛化差距是指模型在训练集和验证集上表现的差距,是由于训练集和验证集的数据差异导致的。如下图所示,可以看到模型在训练集和验证集上的 loss 趋于稳定且波动较小,并且两者差异不大,模型达到收敛状态。


在这里插入图片描述

2.4 数据集的选择

训练日志还可用于诊断数据集选择是否合适(是否具有代表性)。不具有代表性的数据集是指该数据集无法概括样本中所有的特征信息。在训练和验证数据集之间,如果数据集中的样本数量相对于另一个数据集太少,就会发生这种情况。假设某项目需要同时识别影像中山地中稀疏的平房和市中心密集分布的高楼,如果训练集只包含了密集房屋的标签,就会使训练数据的信息不够全面,训练出的模型可能会对稀疏房屋没有很好的预测效果。这种情况可扩增对应数据集的样本,扩充时要尽量保证验证集和测试集的样本类别分布相似且较为均衡,以达到更好的训练效果。


数据集选择不佳在日志上可能表现为训练集的 loss 下降的很好,而验证集上的 loss波动较大且没有改进(如下图所示)。另一种表现形式可参考模型欠拟合的第一种情况,可能是由于训练数据正负样本之间区别不够明显或正样本特征不够突出造成的

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/203976.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Android知识笔记】性能优化专题(四)

App 线程优化 线程调度原理 任意时刻,只有一个线程占用CPU,处于运行状态多线程并发:轮流获取CPU使用权JVM负责线程调度:按照特定机制分配CPU使用权线程调度模型 分时调度模型:轮流获取、均分CPU时间抢占式调度模型:优先级高的获取,JVM采用Android线程调度 nice值:Proc…

Linux Nmap命令解析(Nmap指令)(功能:主机发现、ping扫描、arp扫描、端口扫描、服务版本检测、操作系统识别等)

文章目录 Linux Nmap 命令解析简介Nmap 的核心功能主机发现端口扫描服务版本检测OS 指纹识别(操作系统指纹识别)脚本扫描 安装 NmapNmap 命令结构Nmap 命令文档英文中文 主机发现Ping 扫描ARP 扫描关于nmap -PR(ARP Ping Scan)和n…

Unity 关于生命周期函数的一些认识

Unity 生命周期函数主要有以下一些: Awake(): 在脚本被加载时调用。用于初始化对象的状态和引用。 OnEnable(): 在脚本组件被启用时调用。在脚本组件被激活时执行一次,以及在脚本组件被重新激活时执行。 Reset(): 在脚本组件被重置时调用。用于重置脚本…

卷积神经网络(CNN)识别验证码

文章目录 一、前言二、前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据4.标签数字化 二、构建一个tf.data.Dataset1.预处理函数2.加载数据3.配置数据 三、搭建网络模型四、编译五、训练六、模型评估七、保存和加载模型八、预测 …

Windows下Linkis1.5DSS1.1.2本地调试

1 Linkis: 参考: 单机部署 | Apache Linkis技术分享 | 在本地开发调试Linkis的源码 (qq.com)DataSphere Studio1.0本地调试开发指南 - 掘金 (juejin.cn) 1.1 后端编译 参考【后端编译 | Apache Linkis】】 修改linkis模块下pom.xml,将mysql.connetor.scope修改…

基于命令行模式设计退款请求处理

前言 这篇文章的业务背景是基于我的另一篇文章: 对接苹果支付退款退单接口-CSDN博客 然后就是说设计模式是很开放的东西,可能我觉得合适,你可能觉得不合适,这里只是做下讨论,没有一定要各位同意的意思.... 相关图文件 这里我先把相关的图文件放上来,可能看着会比较清晰点 代码逻…

从零开始的c语言日记day37——数组指针练习

一、 取地址数组储存在了*p里,里面储存的是整个数组的地址但本质也是第一个元素的地址解引用后1为4个字节所以就可以打印数组了。但一般不用这种方法 这样更方便一些 打印多维数组 如果不用这样传参,用指针传参怎么做呢? Main里函数的arr表示…

第1章 爬虫基础

目录 1. HTTP 基本原理1.1 URI 和 URL1.2 HTTP 和 HTTPS1.3 请求1.3.1 请求方法1.3.2 请求的网址1.3.3 请求头1.3.4 请求体 1.4 响应1.4.1 响应状态码1.4.2 响应头1.4.3 响应体 2. Web 网页基础2.1 网页的组成2.1.1 HTML2.1.2 CSS2.1.3 JavaScript 2.2 网页的结构2.3 节点树及节…

windows上 adb devices有设备 wsl上没有

终于解决了!!!! TAT,尝试了很多种办法。 比如WSL中的adb和Windows中的adb版本必须一致,一致也没用,比如使用 ln 建立链接也没用。 这个解决办法的前提是windows中的abd是好用的。 ●在windows…

JSP:JDBC

JDBC(Java Data Base Connectivity的缩写)是Java程序操作数据库的API,也是Java程序与数据库相交互的一门技术。 JDBC是Java操作数据库的规范,由一组用Java语言编写的类和接口组成,它对数据库的操作提供基本方法&#…

anaconda换源安装pytorch(附带bug解决办法)

1.安装anaconda 如何安装anaconda可以看这篇文章:如何安装anaconda 2.换源安装pytorch: 首先进入到pytorch官网,选对好参数之后复制命令进入到anaconda prompt即可: 然后进入自己的环境之后输入该命令(即conda install …),则可以进行下载。下载完成…

pandas教程:USDA Food Database USDA食品数据库

文章目录 14.4 USDA Food Database(美国农业部食品数据库) 14.4 USDA Food Database(美国农业部食品数据库) 这个数据是关于食物营养成分的。存储格式是JSON,看起来像这样: {"id": 21441, &quo…

入侵redis之准备---Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制

入侵redis之准备—Linux关于定时任务crontab相关知识了解配合理解shell反弹远程控制 几点需要知道的信息 【1】crontab一般来说服务器都是有的,依赖crond服务,这个服务也是必须安装的服务,并且也是开机自启动的服务,也就是说&…

C语言做一个恶作剧关机程序

一、项目介绍 C语言实现一个简单的"流氓软件"&#xff0c;一个可以强制关机恶作剧关机程序&#xff0c;输入指定指令可以解除 二、运行截图 然后当你输入“n”才可以解锁关机。 三、完整源码 #include <stdlib.h> #include <stdio.h> #include <s…

机器学习8:在病马数据集上进行算法比较(ROC曲线与AUC)

ROC曲线与AUC。使用不同的迭代次数&#xff08;基模型数量&#xff09;进行 Adaboost 模型训练&#xff0c;并记录每个模型的真阳性率和假阳性率&#xff0c;并绘制每个模型对应的 ROC 曲线&#xff0c;比较模型性能&#xff0c;输出 AUC 值最高的模型的迭代次数和 ROC 曲线。 …

【传智杯】儒略历、评委打分、萝卜数据库题解

&#x1f34e; 博客主页&#xff1a;&#x1f319;披星戴月的贾维斯 &#x1f34e; 欢迎关注&#xff1a;&#x1f44d;点赞&#x1f343;收藏&#x1f525;留言 &#x1f347;系列专栏&#xff1a;&#x1f319; 蓝桥杯 &#x1f319;请不要相信胜利就像山坡上的蒲公英一样唾手…

Vue框架学习笔记——事件scroll和wheel的区别

文章目录 前文提要滚动条滚动事件 scroll鼠标滚动事件 wheel二者不同点 前文提要 本人仅做个人学习记录&#xff0c;如有错误&#xff0c;请多包涵 滚动条滚动事件 scroll scroll事件绑定html页面中的指定滚动条&#xff0c;无论你拖拽滚动条&#xff0c;选中滚动条之后按键盘…

【深度学习】CNN中pooling层的作用

1、pooling是在卷积网络&#xff08;CNN&#xff09;中一般在卷积层&#xff08;conv&#xff09;之后使用的特征提取层&#xff0c;使用pooling技术将卷积层后得到的小邻域内的特征点整合得到新的特征。一方面防止无用参数增加时间复杂度&#xff0c;一方面增加了特征的整合度…

揭秘周杰伦《最伟大的作品》MV,绝美UI配色方案竟然藏在这里

色彩在UI设计的基本框架中占据着举足轻重的位置。实际上&#xff0c;精心挑选和组合的色彩配色&#xff0c;往往就是UI设计成功的不二法门。在打造出一个实用的UI配色方案过程中&#xff0c;我们需要有坚实的色彩理论知识&#xff0c;同时还需要擅于从生活中观察和提取灵感。以…

C++进阶篇5---番外-位图和布隆过滤器

哈希的应用 一、位图 情景&#xff1a;给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无符号整数&#xff0c;如何快速判断一个数是否在这40亿个数中&#xff1f;&#xff1f;&#xff1f; 看到查找元素的范围&#xff0c;暴力肯定是过不了的&#xff0c;我们要么…