U4_2:图论之MST/Prim/Kruskal

文章目录

  • 一、最小生成树-MST
    • 生成MST策略
      • 一些定义
    • 思路
    • 彩蛋
  • 二、普里姆算法(Prim算法)
    • 思路
    • 算法流程
      • 数据存储
        • 分析
    • 伪代码
    • 时间复杂度分析
  • 三、克鲁斯卡尔算法(Kruskal算法)
    • 分析
    • 算法流程
      • 并查集-Find-set
    • 伪代码
    • 时间复杂度分析

一、最小生成树-MST

无向图,无环,所有点连通,边权重和最小
(没有权重标注就默认为1)
在这里插入图片描述

生成MST策略

  1. 从一个空图开始。
  2. 尝试一次添加一条边,始终确保所构建的保持无循环。
  3. 如果在添加了每条边之后,我们确定生成的图是某个最小生成树的子集,我们就完成了。

一些定义

集合 A A A是最小生成树 T T T的子集,当 A U ( u , v ) A\space U(u,v) A U(u,v)也是 M S T MST MST子集时, ( u , v ) (u,v) (uv)是安全的。
切割 c u t cut cut ( S , V − S ) (S,V-S) (S,VS)
a a a c u t cut cut r e s p e c t s respects respects a a a s e t set set A A A o f of of e d g e s edges edges i f if if n o no no e d g e s edges edges i n in in A A A c r o s s e s crosses crosses t h e the the c u t cut cut.
An edge is a light edge crossing a cut if its weight is the minimumof any edge crossing the cut
在这里插入图片描述

思路

(S, V - S) be any cut of G that respects A
(u, v) be a light edge crossing the cut (S, V - S)Then, edge (u, v) is safe for A.
则 lt means that we can find a safe edge by

  1. first finding a cut that respects A
  2. then finding the light edge crossingthat cut
    That light edge is a safe edge

彩蛋

本质上下面所要讲的Prim算法和Kruskal算法都是依据这个总思路来的,先分隔cut,然后根据cut找light edge,最后不断生成MST

二、普里姆算法(Prim算法)

思路

  1. 首先选择任意顶点r作为树的根。
  2. 当树不包含图中的所有顶点时:找到离开树的最短边并将其添加到树中。
    这个思路可以想到,每次的cut就是选入作为顶点的集合 S S S和未选入的顶点 G − S G-S GS

算法流程

数据存储

区分cut:最初始是空集,所有顶点被标记为白色,选入的顶点标记为黑色
利用优先队列存储
利用优先队列(小顶堆)去寻找 t h e the the l i g h e s t lighest lighest e d g e edge edge(相应函数如下)
3. I n s e r t ( u , k e y ) Insert(u, key) Insert(u,key):用键值key在Q中插入u。
4. u = E x t r a c t − m i n ( ) u = Extract- min() u=Extractmin():提取键值最小的项。
5. D e c r e a s e − K e y ( u , n e w − k e y ) Decrease-Key(u, new-key) DecreaseKey(u,newkey):将u的键值减小为new-key
利用 p r e d [ A ] pred[A] pred[A]去存储每个顶点的存储顺序

分析

t h e the the l i g h e s t lighest lighest e d g e edge edge本质上是在黑白分界点的这些边中寻找,因此每次更新都需要维护这些点( k e y key key)。
初始的时候设为 i n i f i n i t y inifinity inifinity,每次加入新顶点时就找到它的所有边判断是否比现在的key是否更小了,如果更小了就可以更新并且换前驱
在这里插入图片描述

伪代码

for u ∈ V docolor[u] ← white,key[u] ← +∞
end
key[u] ← 0,pred[r] ← null;	//最开始的顶点
Q ← new PriQueue(V)   
while Q is  noempty dou ← Q.Extract-Min(); //the lighest edge   for v ∈ adj[u] doif(color[u] ← white && w[u,v] < key[u]) thenkey[u] ← w[u,v]Q.decrease-Key(v,key[u]) pred[v] ← uendendcolor[u] ← black
end

时间复杂度分析

创建优先队列 O ( V l o g V ) O(VlogV) O(VlogV),每次循环 E x t r a c t − M i n Extract-Min ExtractMin l o g ( V ) log(V) log(V),总共V个顶点,总时间复杂度为 O ( V l o g V ) O(VlogV) O(VlogV)。每次循环 D e c r e a s e − K e y Decrease-Key DecreaseKey O ( l o g V ) O(logV) O(logV),因为循环内每次更新都是针对边来说,所有边都遍历一遍,因此循环内总时间复杂度为 O ( E l o g V ) O(ElogV) O(ElogV),总时间复杂度为 T ( n ) = O ( ( V + E ) l o g V ) = O ( E l o g V ) T(n)=O((V+E)logV)=O(ElogV) T(n)=O((V+E)logV)=O(ElogV)

三、克鲁斯卡尔算法(Kruskal算法)

分析

  1. 从一个空图开始。
  2. 尝试一次添加一条边,始终确保所构建的保持无循环。.
  3. 如果我们在每一步都确定生成的图是某个最小生成树的子集,我们就完成了。

与Prim的算法生长一棵树不同,Kruskal的算法生长一组树(森林)。
最初,这个森林只由顶点组成(没有边)。
在每一步中,添加不产生循环的权重最小的边。
继续直到森林“合并”成一棵树。

本质上,也是继承于一说的主算法:
设A为Kruskal算法选择的边集,设(u, v)为下一步要添加的边。这足以说明这一点:
t h e r e there there i s is is a a a c u t cut cut t h a t that that r e s p e c t s respects respects A A A
( u , v ) (u, v) (u,v) i s is is t h e the the l i g h t light light e d g e edge edge c r o s s i n g crossing crossing t h i s this this c u t cut cut
在这里插入图片描述

算法流程

  1. 刚开始 A A A为空集, F F F存入所有边并且从小到大排序,
  2. 在F中选择一条权值最小的边e,检查将e加到A上是否形成一个循环。
    构成循环,则从F移除
    不构成循环,则从F添加进A
  3. F为空集时停止操作

现在有个问题,怎么才能不形成环呢,
在框架算法的每一步中, ( V , A ) (V,A) (V,A)都是非循环的,因此它是一个森林,一个顶点延申两条枝干,且枝干之间没有路径,这样就是森林。因此:
如果 u u u v v v在同一棵树中,则将边 u , v {u,v} u,v添加到A中创建一个循环。
如果 u u u v v v不在同一棵树中,那么将边 u , v {u,v} u,v添加到 A A A中不会创建一个循环。

根据这个性质,如果一条边被选中,它的两个端点若在一个树上,那么再将这条边添加进树时,肯定会形成环,根据这一性质,我们可以维护并查集去判断是否成环

并查集-Find-set

本质上,并查集就是一个个树集合,每个元素都唯一指向它的父亲,根节点父亲就是子集,因此每棵树的唯一标识就是根节点。如果两个元素唯一标识一样,那它们就在一棵树上。
在这里插入图片描述

j u d g e judge judge f i n d − s e t ( u ) find-set(u) findset(u) = = == == f i n d − s e t ( v ) find-set(v) findset(v),维护 f i n d − s e t find-set findset过程如下:

  1. C r e a t e − s e t u ) Create-set u) Createsetu):创建包含单个元素 u u u的集合。 O ( 1 ) O(1) O(1)
x.parent ← x
  1. F i n d − s e t ( u ) Find-set (u) Findset(u):查找包含元素u的集合(假设每个集合都有唯一的ID,后面可知是树的根节点)。 O ( l o g n ) O(logn) O(logn)
while x != x.parent dox ← x.parent
end
  1. U n i o n ( u , v ) Union(u, v) Union(u,v):将分别包含u和v的集合归并为一个公共集合。(当判断完不会形成环后,可以合并). O ( l o g n ) O(logn) O(logn)(找树的根节点费时,其他都是 O ( 1 ) O(1) O(1)时间)
    注意当我们将两棵树合并在一起时,我们总是将高树的根作为矮树的父树。不然会很畸形,费时。
    如果两棵树有相同的高度,我们选择第一棵树的根指向第二棵树的根。树的高度增加了1(根节点+被合并的子树,因此高度+1)。其他情况下树的高度都是不变的。
a ← Find-Set(x)
b ← Find-Set(y)
if a.height <= b.height thenif a.height is equal to b.height thenb.hright++;enda.parent ← b
end
elseb.parent ← a
end

伪代码

sort E in increasing order by weight w;
A ← {}
for u ∈ V doCreate-Set(u);
end
for ei ∈E do  //ei两个端点为ui,viif(find-set(ui)!=find-set(vi)) thenadd {ui,vi} to AUnion(ui,vi)end
end
return 

时间复杂度分析

排序用时 O ( E l o g E ) O(ElogE) O(ElogE) c r e a t e − s e t create-set createset用时 O ( V ) O(V) O(V),循环次数是边的次数 E E E,每次循环 u n i o n union union花费 l o g ( V ) log(V) log(V),总时间复杂度 O ( E l o g V ) O(ElogV) O(ElogV),因此总花费 T ( n ) = O ( E l o g E ) T(n)=O(ElogE) T(n)=O(ElogE)(边比顶点多,取大的)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/204568.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenWrt Lan口上网设置

LAN口上网设置 连接上openwrt&#xff0c;我用的 倍控N5105&#xff0c;eth0&#xff0c;看到Openwrt的IP是10.0.0.1 在 网络 -> 网口配置 -> 设置好 WAN 口和 LAN 口 初次使用经常重置 openwrt 所以我设置的是 静态IP模式 - 网络 -> 防火墙 -> 常规设置 ->…

IDEA2023版本创建Sping项目只能勾选17和21,却无法使用Java8?(已解决)

方案&#xff1a;替换创建项目的源 我们只知道IDEA页面创建Spring项目&#xff0c;其实是访问spring initializr去创建项目。故我们可以通过阿里云国服去间接创建Spring项目。将https://start.spring.io/或者http://start.springboot.io/替换为 https://start.aliyun.com/

什么是量子优势?

量子优势是量子计算领域正在积极努力的里程碑&#xff0c;量子计算机可以解决最强大的非量子或经典计算机无法解决的问题。 量子是指原子和分子的尺度&#xff0c;在这个尺度上&#xff0c;我们所经历的物理定律被打破&#xff0c;并且应用了一组不同的、违反直觉的定律。量子…

Linux——vim编辑文件时——.swp文件解决方案

test.cpp样例 当我们vim test.cpp进入编辑文件。 却忘记了保存退出 再次进入就会出现一下画面 当你摁下Enter键位 出现以下几个选项 O——是只读不写 E——是正常打开文件但不会载入磁盘内容 R——覆盖——是加载存储磁盘的文件(当我们忘记保存时&#xff0c;系统会自动帮我…

Django二转Day02

http #1 http 是什么#2 http特点#3 请求协议详情 -请求首行---》请求方式&#xff0c;请求地址&#xff0c;请求协议版本 -请求头---》key:value形式 -referer&#xff1a;上一次访问的地址 -user-agenet&#xff1a;客户端类型 -name&#x…

百度人工智能培训第一天笔记

参加了百度人工智能初步培训&#xff0c;主要是了解一下现在人工智能的基本情况&#xff0c;以便后续看可以参与一些啥&#xff1f; 下面就有关培训做一些记录&#xff0c;以便后续可以继续学习。 一、理论基础部分 二、实际操作部分 主要学习的百度人工智能平台如下&#xf…

同旺科技 USB 转 RS-485 适配器 -- 隔离型(定制款)

内附链接 1、USB 转 RS-485 适配器 隔离版主要特性有&#xff1a; ● 支持USB 2.0/3.0接口&#xff0c;并兼容USB 1.1接口&#xff1b; ● 支持USB总线供电&#xff1b; ● 支持Windows系统驱动&#xff0c;包含WIN10 / WIN11 系统32 / 64位&#xff1b; ● 支持Windows …

不确定度校准和可靠性图简介

图片来源 项杰 一、说明 不确定性校准是机器学习中最容易被误解的概念之一。它可以概括为这个简单的问题&#xff1a;“鉴于上述下雨的可能性&#xff0c;您是否带伞&#xff1f;” 我们在日常生活中使用主观概率和不确定性校准的概念&#xff0c;但没有意识到它们。对于不确定…

西南科技大学(数据结构A)期末自测练习二

一、填空题(每空1分,共10分) 1、在线性表的下列运算中,不改变数据元素之间结构关系的运算是( D ) A、插入 B、删除 C、排序 D、定位 2、顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是( B ) A.110 B.108 C.100 …

Debian10安装VMware Tools

一、原系统 首先我在界面按CTRLALTT和CTRLSiftT都没有反应&#xff0c;没关系&#xff0c;我有办法 系统版本 管理员用户 步骤一&#xff1a;打开VMware Tools文件 步骤二、将文件复制到自己熟悉的文件内 步骤三、命令行查看文件是否复制成功存在 步骤四、解压VMware-tools…

Apache2.4 AliasMatch导致301重定向问题?

环境&#xff1a;ubuntu18.04-desktop apache2版本&#xff1a; rootubuntu:/etc/apache2# apache2ctl -v Server version: Apache/2.4.29 (Ubuntu) Server built: 2023-03-08T17:34:33apache配置&#xff1a; DocumentRoot /var/www/html # Alias就没事 # Alias "/my…

Android : SQLite 增删改查—简单应用

示例图&#xff1a; 学生实体类 Student.java package com.example.mysqlite.dto;public class Student {public Long id;public String name;public String sex;public int age;public String clazz;public String creatDate;//头像public byte[] logoHead;Overridepublic St…

火狐挂代理访问问题Software is preventing Firefox from safely connecting to this site

1、报错 Software is preventing Firefox from safely connecting to this site2、解决步骤 火狐浏览器访问http://burp&#xff0c;右上角有下载按钮下载下来证书文件 在 Firefox 中设置证书颁发机构 (CA) 验证

计算机毕业设计php+bootstrap小区物业管理系统

意义&#xff1a;随着我国经济的发展和人们生活水平的提高&#xff0c;住宅小区已经成为人们居住的主流&#xff0c;人们生活质量提高的同时&#xff0c;对小区物业管理的要求也越来越高&#xff0c;诸如对小区的维修维护&#xff0c;甚至对各项投诉都要求小区管理者做得好&…

2023.11.28-电商平台建设03 - 大数据调优手段

1.优化手段 1.1分桶表 HIVE的分桶本质上就是MR的分区操作 建表语句: create table 表名(字段 类型,.... ) clustered by(分桶字段) [sorted by (字段 [asc | desc])] into N buckets --- 定义分桶表核心语句 row format...... 分桶的作用 1) 进行数据采样工作 1.1) …

前端---CSS篇(详解CSS)

1.CSS简介 CSS(Cascading Style Sheets)层叠样式表&#xff0c;是用来为结构化文档&#xff08;HTML、XML等应用&#xff09;添加样式,比如字体、颜色、大小、间距的计算机语言。CSS目前已经发展到了CSS3.0了。 2.CSS导入方式 CSS有三种导入方式&#xff1a; 1.行内样式&am…

玻色量子对外合作

2023年 2023.7 首个央企量子云计算项目&#xff0c;中标&#xff01; 2023.6 勇闯“量子电力”新领域&#xff0c;玻色量子与清大科越达成战略合作 2023.5 玻色量子签约移动云“五岳”量子云计算创新加速计划&#xff01; 2023.3 “量子计算通信”&#xff01;玻色量子与…

从0开始学习JavaScript--JavaScript 箭头函数

JavaScript的现代语法&#xff0c;箭头函数&#xff08;Arrow Functions&#xff09;是一个不可忽视的重要部分。它们不仅提供了更简洁的语法&#xff0c;还改变了函数的作用域规则。在这篇文章中&#xff0c;将深入研究JavaScript箭头函数的概念、语法、用法以及它们与传统函数…

docker容器运维操作命令

docker exec &#xff1a;在运行的容器中执行命令 docker exec [OPTIONS] CONTAINER COMMAND [ARG...] OPTIONS说明&#xff1a; -d :分离模式: 在后台运行 -i :即使没有附加也保持STDIN 打开 -t :分配一个伪终端docker ps : 列出容器 docker ps [OPTIONS] OPTIONS说明&#…

Javaweb之Vue组件库Element之Dialog对话框的详细解析

4.3.3 Dialog对话框 4.3.3.1 组件演示 Dialog: 在保留当前页面状态的情况下&#xff0c;告知用户并承载相关操作。其企业开发应用场景示例如下图所示 首先我们需要在ElementUI官方找到Dialog组件&#xff0c;如下图所示&#xff1a; 然后复制如下代码到我们的组件文件的templ…