计算机视觉面试题-03

在这里插入图片描述


1、简单介绍一下sigmoid,relu,softplus,tanh,RBF及其应用场景

这里简单介绍几个激活函数及其应用场景:

  1. Sigmoid 函数(Logistic 函数):
    公式: s i g m a ( x ) = 1 1 + e − x \\sigma(x) = \frac{1}{1 + e^{-x}} sigma(x)=1+ex1
    特点: 将输入映射到范围 [0, 1] 之间,常用于输出层的二分类问题。
    应用场景: 二分类问题、输出层的概率输出。

  2. ReLU 函数(Rectified Linear Unit):
    公式: f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
    特点: 当输入大于零时,输出等于输入;当输入小于等于零时,输出为零。非常简单且计算效率高。
    应用场景: 隐藏层的非线性激活函数,常用于深度学习中。

  3. Softplus 函数:
    公式: f ( x ) = ln ⁡ ( 1 + e x ) f(x) = \ln(1 + e^x) f(x)=ln(1+ex)
    特点: 是ReLU的平滑版本,保留了ReLU的非线性特性,但具有平滑的导数。
    应用场景: 隐藏层的非线性激活函数,用于需要平滑导数的场景。

  4. Tanh 函数:
    公式: t a n h ( x ) = e x − e − x e x + e − x \\tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} tanh(x)=ex+exexex
    特点: 将输入映射到范围 [-1, 1] 之间,优于Sigmoid在信息传递时的均值为零。
    应用场景: 隐藏层的非线性激活函数,常用于循环神经网络(RNN)

  5. RBF 函数(Radial Basis Function):
    公式: ϕ ( x ) = e − x 2 2 σ 2 \phi(x) = e^{-\frac{x^2}{2\sigma^2}} ϕ(x)=e2σ2x2
    特点: 是一种径向基函数,常用于支持向量机(SVM)等模型
    应用场景: 支持向量机、模式识别、非线性分类问题

每个激活函数都有其特定的应用场景,选择合适的激活函数通常取决于具体的问题和网络结构。


2.数值计算中的计算上溢与下溢问题,如softmax中的处理方式

在数值计算中,计算上溢和下溢是常见的问题,特别是在涉及指数运算等情况。Softmax函数是在深度学习中广泛使用的一个例子,它的计算涉及到指数运算,可能会面临数值稳定性的问题。

Softmax函数的公式如下:

Softmax ( x ) i = e x i ∑ j = 1 N e x j \text{Softmax}(x)_i = \frac{e^{x_i}}{\sum_{j=1}^{N}e^{x_j}} Softmax(x)i=j=1Nexjexi

其中, x i x_i xi 是输入向量的第 i i i个元素, N N N 是向量的长度。

在Softmax中,由于指数运算可能导致数值溢出的问题,通常采用以下两种方式来解决:

减去最大值: 在计算Softmax的时候,可以对输入向量 (x) 中的每个元素减去向量中的最大值。这不会改变Softmax的输出结果,但可以减小指数运算的数值大小,从而提高数值稳定性。

Softmax ( x ) i = e x i − max ⁡ ( x ) ∑ j = 1 N e x j − max ⁡ ( x ) \text{Softmax}(x)_i = \frac{e^{x_i - \max(x)}}{\sum_{j=1}^{N}e^{x_j - \max(x)}} Softmax(x)i=j=1Nexjmax(x)eximax(x)
使用稳定版本的Softmax: 在一些深度学习框架中,实现了数值稳定的Softmax函数,通过一些数值技巧来防止上溢和下溢。这包括对指数运算的近似计算等


3.梯度爆炸的一些解决办法

梯度爆炸是深度学习中的一个常见问题,特别是在循环神经网络(RNN)等网络中。当反向传播过程中梯度值变得非常大时,会导致权重更新过大,模型参数发散,训练不稳定。

以下是一些常见的梯度爆炸问题的解决办法:

  1. 梯度裁剪(Gradient Clipping): 这是一种常见的方法,通过设置一个梯度阈值,当梯度的范数超过这个阈值时,对梯度进行缩放,使其不超过阈值。这样可以防止梯度爆炸。

  2. 权重正则化(Weight Regularization): 向损失函数添加权重正则化项,例如L2正则化,可以限制权重的增长,减缓梯度爆炸的问题。

  3. 选择合适的激活函数: 某些激活函数在反向传播过程中更容易导致梯度爆炸。ReLU等激活函数可能会有这个问题,可以考虑使用其变种,如Leaky ReLU或者使用激活函数的平滑版本。

  4. 使用更复杂的优化算法: 一些优化算法,如Adam,具有自适应的学习率,对梯度的变化更为敏感,可能在一定程度上缓解梯度爆炸问题

  5. 梯度检查: 可以通过梯度检查的方式来确保梯度的范围在合理的范围内。如果梯度太大,可能需要调整网络结构、初始化参数等。

  6. 更好的初始化策略: 合适的参数初始化对于避免梯度爆炸也很重要。使用一些更复杂的初始化策略,如Xavier/Glorot初始化,可以帮助缓解梯度爆炸问题。


4.Dropout与Bagging集成方法的关系,以及Dropout带来的意义与其强大的原因

Dropout 和 Bagging 是两种不同的集成学习方法,但它们都与模型的稳定性和泛化性能有关

  1. 关系:
    Bagging(Bootstrap Aggregating): Bagging 是一种集成学习方法,通过构建多个相互独立的基学习器,然后将它们的预测结果进行平均或投票来降低模型的方差。Bagging 通常使用自助采样(bootstrap sampling)来生成不同的训练集,每个基学习器都在不同的训练集上训练
    Dropout: Dropout 是一种正则化技术,通常应用于神经网络。在训练过程中,Dropout 随机地将网络中的一部分神经元置零,即“丢弃”它们,以防止模型对某些特定的输入特征过于依赖。Dropout 可被看作是在每次训练迭代中进行的一种集成学习,因为每个迭代都是在原始网络的一个子网络上进行的。

  2. Dropout 的意义与强大原因:
    防止过拟合: Dropout 被设计为一种正则化技术,可以有效防止过拟合。通过随机地关闭一些神经元,网络不再过于依赖特定的神经元,从而提高了模型的泛化性能。
    模拟集成学习: Dropout 在每个训练迭代中随机地“删除”一些神经元,这样可以看作是在每次迭代中训练了一个不同的子网络。这类似于 Bagging 中训练不同子模型的思想,因此 Dropout 可以被看作是一种近似的集成学习方法。
    降低过拟合风险: 在训练阶段,Dropout 引入了噪声,使得网络对输入的微小变化更加鲁棒。这有助于降低模型对训练数据中噪声的过度拟合。
    在深度学习中,Dropout 成为了一种非常常用且有效的正则化技术,尤其适用于大型神经网络和复杂任务。


5.举例CNN中的channel在不同数据源中的含义

在卷积神经网络(CNN)中,“channel” 通常指的是输入数据的深度(depth)或通道数。这个深度决定了输入数据的维度,而每个通道包含不同的特征信息。下面是一些常见的例子,说明了在不同数据源中的 channel 含义:

  1. 彩色图像:
    三个通道(RGB): 对于彩色图像,通常有三个通道,分别代表红色(R)、绿色(G)、蓝色(B)。每个通道包含图像中对应颜色的信息。在 CNN 中,这三个通道分别作为输入的不同深度。

  2. 卫星图像:
    多个波段通道: 卫星图像通常包含多个波段(如红外、近红外等),每个波段可以看作是一个通道。这些波段提供了不同光谱范围的信息,对于地物分类和遥感应用很有用。

  3. 声音信号:
    不同频道的声音波形: 对于声音信号,可以将不同频率范围的声音波形视为不同的通道。这样的通道可以捕捉到声音信号的不同特征。

  4. 文本数据:
    单词嵌入的通道: 在处理文本数据时,可以使用单词嵌入(word embedding)来表示每个单词,每个嵌入维度可以看作是一个通道。这样的通道可以表示不同单词的语义信息。

  5. 时间序列数据:
    传感器测量的通道: 对于时间序列数据,每个传感器测量可以看作是一个通道。例如,对于运动传感器,每个轴的加速度可以作为一个通道。

总的来说,通道在 CNN 中用于捕捉输入数据中不同方面的特征信息。每个通道对应于数据的一个维度,通过同时处理不同通道的信息,CNN 可以学习到更加丰富和抽象的特征表示。


5.半监督的思想以及在深度学习中的应用

半监督学习是一种介于监督学习和无监督学习之间的学习方式,其中模型在训练过程中同时使用带标签的数据和未标签的数据。这种学习方式的目标是通过未标签的数据提供的额外信息来提高模型性能。以下是半监督学习的一些思想和在深度学习中的应用:

半监督学习的思想:

  1. 未标签数据的利用: 在监督学习中,我们通常只使用带标签的数据进行训练,而在半监督学习中,未标签的数据也被纳入训练过程中。这是因为获取带标签的数据通常是昂贵和耗时的,而未标签的数据相对容易获取。

  2. 提高泛化能力: 通过使用未标签的数据,半监督学习可以帮助模型更好地泛化到新的、未见过的数据。未标签的数据提供了对数据分布的更全面的认识,有助于模型在各种情况下的表现。

  3. 充分利用有限标签: 在一些应用场景中,带标签的数据可能非常有限,但未标签的数据却很丰富。半监督学习可以帮助模型在有限的标签数据上学到更鲁棒和泛化性能更好的表示。

深度学习中的半监督学习应用:

  1. 自编码器(Autoencoder): 自编码器是一种无监督学习的模型,但也可以在半监督学习中使用。通过在自编码器的编码部分引入带标签的数据,可以促使模型学到更有判别性的表示。

  2. 生成对抗网络(GAN): GAN 是一种用于生成新样本的模型,但也可以应用于半监督学习。通过在生成器和判别器中引入带标签的数据,可以提高生成器的性能。

  3. 半监督分类器: 在分类任务中,可以通过在模型的损失函数中添加未标签数据的损失项来进行半监督学习。这可以通过利用标签数据和未标签数据之间的相似性来提高模型的性能。

  4. 自监督学习: 自监督学习是一种无监督学习的形式,其中模型通过学习自身生成的标签来进行训练。这种方法可以通过引入带标签的数据来增强学习过程。

总体而言,半监督学习是一种有效利用未标签数据的方式,可以在数据有限的情况下提高深度学习模型的性能。在实际应用中,尤其是在数据稀缺的领域,半监督学习提供了一种有力的工具来改善模型的泛化性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/206812.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python生成exe文件

Python如何生成exe文件 在终端执行 pip install pyinstaller 在终端执行pyinstaller E:\fund_data\GetFund.py,运行结束后会在D:\Python\Python311\Scripts\dist\目录下生成GetFund.exe文件 3.双击exe文件运行,如果未出现预期结果,可以把e…

2023.11.23使用flask实现在指定路径生成文件夹操作

2023.11.23使用flask实现在指定路径生成文件夹操作 程序比较简单,实现功能: 1、前端输入文件夹 2、后端在指定路径生成文件夹 3、前端反馈文件夹生成状态 main.py from flask import Flask, request, render_template import osapp Flask(__name__)a…

STM32USART+DMA实现不定长数据接收/发送

STM32USARTDMA实现不定长数据接收 CubeMX配置代码分享实践结果 这一期的内容是一篇代码分享,CubeMX配置介绍,关于基础的内容可以往期内容 夜深人静学32系列11——串口通信夜深人静学32系列18——DMAADC单/多通道采集STM32串口重定向/实现不定长数据接收 …

【Java学习笔记】71 - JDBC入门

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter25/src/com/yinhai/dao_ 一、JDBC概述 1.基本介绍 1. JDBC为访问不同的数据库提供了统一的接口,为使用者屏蔽了细节问题。 2. Java程序员使用JDBC,可以连接任何提供了JDBC驱动…

C++ -- 每日选择题 -- Day2

第一题 1. 下面代码中sizeof(A)结果为() #pragma pack(2) class A {int i;union U{char str[13];int i;}u;void func() {};typedef char* cp;enum{red,green,blue}color; }; A:20 B:21 C:22 D:24 答案及解析…

ssm+vue的仓库在线管理系统的设计与实现(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频: ssmvue的仓库在线管理系统的设计与实现(有报告)。Javaee项目,ssm vue前后端分离项目。 项目介绍: 采用M(model)V(view)C(controller)三…

游戏反Frida注入检测方案

在游戏安全对抗过程中,有不少外挂的实现基于对游戏内存模块进行修改,这类外挂通常会使用内存修改器,除此之外,还有一种门槛相对更高、也更难检测的「注入挂」。 据FairGuard游戏安全数据统计,在游戏面临的众多安全风险…

Apipost推出IDEA插件,代码写完直接调试

IDEA是一款功能强大的集成开发环境(IDE),它可以帮助开发人员更加高效地编写、调试和部署软件应用程序。我们在编写完接口代码后需要进行接口调试等操作,一般需要打开额外的调试工具。 今天给大家介绍一款IDEA插件:Api…

【软件测试】白盒测试和黑盒测试

一、软件测试基本分类 一般地,我们将软件测试活动分为以下几类:黑盒测试、白盒测试、静态测试、动态测试、手动测试、自动测试等等。 黑盒测试 黑盒测试又叫功能测试、数据驱动测试或给予需求规格说明书的功能测试。这种测试注重于测试软件的功能性需…

python开发之个微批量删除好友

简要描述: 删除联系人 请求URL: http://域名地址/delContact 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wI…

探索前端设计的新境界——介绍IVueUI工具助力Vue页面设计

在快速发展的前端领域,Vue.js作为一款渐进式JavaScript框架,一直备受开发者喜爱。然而,在Vue前端开发的旅程中,页面设计常常是一个不可避免的挑战。今天,我要向大家介绍一款令Vue前端开发者受益匪浅的工具——www.ivue…

【微服务】java 规则引擎使用详解

目录 一、什么是规则引擎 1.1 规则引擎概述 1.2 规则引擎执行过程 二、为什么要使用规则引擎 2.1 使用规则引擎的好处 2.1.1 易于维护和更新 2.1.2 增强应用程序的准确性和效率 2.1.3 加快应用程序的开发和部署 2.1.4 支持可视化和可管理性 2.2 规则引擎使用场景 三、…

基于5G+物联网+SaaS+AI的农业大数据综合解决方案:PPT全文44页,附下载

关键词:智慧农业大数据,5G智慧农业,物联网智慧农业,SaaS智慧农业,AI智慧农业,智慧农业大数据平台 一、智慧农业大数据建设背景 1、应对全球人口快速增长带来的粮食生产压力,未来的粮食生产力必…

ERP软件对Oracle安全产品的支持

这里的ERP软件仅指SAP ECC和Oracle EBS。 先来看Oracle EBS: EBS的认证查询方式,和数据库认证是一样的。这个体验到时不错。 结果中和安全相关的有: Oracle Database VaultTransparent Data Encryption TDE被支持很容易理解,…

Android相机性能提高50%

文章目录 应用举例(可以不看这一part,直接跳过看具体怎么做):Snapchat 通过 Camera2 Extensions API 将新相机功能的集成速度提高了 50%**Camera2 扩展 API 可以访问高级功能更多设备上的更多机会 正文:开始使用扩展架…

Redis String类型

String 类型是 Redis 最基本的数据类型,String 类型在 Redis 内部使用动态长度数组实现,Redis 在存储数据时会根据数据的大小动态地调整数组的长度。Redis 中字符串类型的值最大可以达到 512 MB。 关于字符串需要特别注意∶ 首先,Redis 中所…

前端技术探秘-Nodejs的CommonJS规范实现原理 | 京东物流技术团队

了解Node.js Node.js是一个基于ChromeV8引擎的JavaScript运行环境,使用了一个事件驱动、非阻塞式I/O模型,让JavaScript 运行在服务端的开发平台,它让JavaScript成为与PHP、Python、Perl、Ruby等服务端语言平起平坐的脚本语言。Node中增添了很…

Pycharm新手开发指南

文章目录 前言一、常用功能介绍二、常用高效pycharm使用方法关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③Python小游戏源码五、面试资料六、Python兼职渠道 前言…

MySQL如何处理并发访问和高负载?

在当今互联网时代,面对日益增长的数据量和用户访问量,数据库的并发访问和高负载处理变得尤为重要。MySQL作为最流行的关系型数据库管理系统之一,具备许多关键技术和策略来处理并发访问和高负载,下面将对其进行深入探讨。 ​ 图片…

数据库系统原理与实践 笔记 #10

文章目录 数据库系统原理与实践 笔记 #10存储管理与索引(续)数据字典存储系统元数据的关系表示 数据缓冲区存储访问缓冲区管理器缓冲区替换策略 顺序索引基本概念索引技术评价指标顺序索引稠密索引稀疏索引索引多级索引辅助索引主索引与辅助索引多码索引 B树索引B树索引文件B树…