Java多线程-第20章

Java多线程-第20章

1.创建线程

Java是一种支持多线程编程的编程语言。多线程是指在同一程序中同时执行多个独立任务的能力。在Java中,线程是一种轻量级的子进程,它是程序中的最小执行单元。Java的多线程编程可以通过两种方式实现:继承Thread类或实现Runnable接口。

  1. 继承Thread类:

    class MyThread extends Thread {public void run() {// 线程执行的代码}
    }
    

    创建并启动线程:

    MyThread myThread = new MyThread();
    myThread.start();  // 启动线程
    
  2. 实现Runnable接口:

    class MyRunnable implements Runnable {public void run() {// 线程执行的代码}
    }
    

    创建并启动线程:

    MyRunnable myRunnable = new MyRunnable();
    Thread thread = new Thread(myRunnable);
    thread.start();  // 启动线程
    

所有的程序都是通过main方法开始执行的。当一个Java程序启动时,JVM(Java虚拟机)会自动创建一个主线程,该线程负责执行main方法。在多线程编程中,你可以创建额外的线程来执行其他任务。

Java提供了一些关键字和方法来控制线程的执行,其中一些关键字包括:

  • synchronized:用于控制多个线程访问共享资源时的同步问题。
  • wait()notify()notifyAll():用于实现线程间的通信和协调。
  • sleep(long milliseconds):让线程休眠一段时间。
  • join():等待一个线程终止。
  • yield():让出CPU执行权,让其他线程执行。

多线程编程的主要挑战之一是避免竞态条件(Race Condition)和死锁(Deadlock)。竞态条件发生在多个线程试图同时访问和修改共享数据时,而死锁则是线程相互等待对方释放资源,导致所有线程都无法继续执行的情况。

线程的状态有以下几种:

  • 新建(New): 线程已经创建,但还没有开始执行。
  • 就绪(Runnable): 线程可以开始执行,等待CPU时间片。
  • 运行(Running): 线程正在执行。
  • 阻塞(Blocked): 线程被阻塞,等待某个事件的发生。
  • 死亡(Terminated): 线程执行完成。

请注意,Java的多线程编程也有一些高级的概念和工具,如线程池、Callable和Future等,用于更灵活地处理多线程任务。

实例1:让线程循环打印1-10的数字

在这里插入图片描述

实例2:让窗口中的图标动起来

在这里插入图片描述

2.线程的生命周期

Java线程的生命周期描述了一个线程从创建到运行再到结束的整个过程,它包括多个状态,每个状态代表了线程在不同阶段的状态。Java线程的生命周期可以分为以下几个状态:

  1. 新建状态(New):
    • 当线程对象被创建时,它处于新建状态。
    • 此时,线程还没有开始执行。
  2. 就绪状态(Runnable):
    • 当线程调用start()方法后,线程进入就绪状态。
    • 此时,线程已经准备好运行,等待获取CPU时间片。
  3. 运行状态(Running):
    • 当就绪状态的线程获取到CPU时间片时,线程进入运行状态。
    • 此时,线程正在执行其任务。
  4. 阻塞状态(Blocked):
    • 线程在运行过程中,可能由于某些原因需要暂时放弃CPU时间片,进入阻塞状态。
    • 典型的例子包括等待I/O完成、等待获取锁、等待通知等。
    • 当阻塞条件解除时,线程会重新进入就绪状态。
  5. 等待状态(Waiting):
    • 线程在等待某个条件满足时,会进入等待状态。
    • 调用Object.wait()Thread.join()LockSupport.park()等方法可以使线程进入等待状态。
    • 等待状态的线程需要其他线程通知或中断才能继续执行。
  6. 超时等待状态(Timed Waiting):
    • 线程在等待一段时间后会进入超时等待状态。
    • 调用带有超时参数的Object.wait()Thread.sleep()Thread.join()等方法会导致线程进入超时等待状态。
  7. 终止状态(Terminated):
    • 线程执行完任务或者发生了未捕获的异常时,线程进入终止状态。
    • 一个终止状态的线程不能再次启动。

这些状态构成了线程的生命周期,如下图所示:

New -> Runnable -> (Running) -> Blocked -> (Runnable) -> (Terminated)\-> Waiting -> (Runnable) -> (Terminated)\-> Timed Waiting -> (Runnable) -> (Terminated)

注意,生命周期中的括号表示这些状态可能是短暂的,线程可能在运行、等待、超时等待等状态间切换。在实际的多线程应用中,正确地管理线程生命周期是至关重要的,以避免潜在的问题,如死锁、竞态条件等。

3.操作线程的方法

4.1线程的休眠

线程休眠是通过Thread.sleep(long milliseconds)方法实现的。这个方法让当前正在执行的线程在指定的时间内进入休眠状态(即暂停执行),单位是毫秒。在指定时间过去或者线程被中断时,线程将恢复执行。

方法签名为:

public static native void sleep(long millis) throws InterruptedException;
  • millis:休眠时间,以毫秒为单位。

注意,sleep方法可能抛出InterruptedException异常,因为线程在休眠时可以被其他线程中断。在处理中断时,可以选择捕获该异常并处理,或者将异常继续传播出去。

4.2线程的加入

在Java中,可以使用join()方法来等待一个线程完成其执行。join()方法的作用是使当前线程等待调用join()方法的线程执行结束,然后再继续执行当前线程。

方法签名为:

public final void join() throws InterruptedException;

或者可以使用带有超时参数的join(long millis)方法:

javaCopy code
public final synchronized void join(long millis) throws InterruptedException;
  • millis:等待的最大时间(以毫秒为单位)。

以下是一个简单的例子,演示了线程的加入:

class MyThread extends Thread {public void run() {for (int i = 1; i <= 5; i++) {System.out.println("Task " + i + " in progress by " + Thread.currentThread().getName());try {// 模拟任务执行时间Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}}
}public class JoinExample {public static void main(String[] args) {MyThread thread1 = new MyThread();MyThread thread2 = new MyThread();// 启动线程1thread1.start();try {// 等待线程1执行完成,然后再继续执行主线程thread1.join();} catch (InterruptedException e) {e.printStackTrace();}// 启动线程2thread2.start();// 主线程继续执行System.out.println("Main thread continues its work.");}
}

在这个例子中,主线程启动了thread1,然后调用thread1.join()等待thread1执行完成,接着启动了thread2。由于join()方法会使主线程等待被调用的线程执行完成,所以在这个例子中主线程会等待thread1执行完成后再启动thread2

4.3线程的中断

线程的中断是一种线程间的协作机制,它允许一个线程通知另一个线程,以请求它停止正在执行的任务。线程的中断通过调用interrupt()方法来触发。

  1. 中断线程:

    • 使用interrupt()方法中断线程。

      Thread myThread = new MyThread();
      myThread.start();
      // ...
      myThread.interrupt();  // 中断线程
      
    • interrupt()方法会设置线程的中断标志位,但并不会立即停止线程的执行。线程需要检查自己的中断状态并在适当的时候终止执行。

  2. 检查中断状态:

    • 使用Thread.interrupted()方法检查当前线程的中断状态,并清除中断状态。

      if (Thread.interrupted()) {// 线程已被中断,执行相应的处理
      }
      
    • 或者使用isInterrupted()方法检查线程的中断状态而不清除中断状态。

      if (myThread.isInterrupted()) {// 线程已被中断,执行相应的处理
      }
      
  3. 处理中断:

    • 在线程的执行过程中,可以通过检查中断状态来决定是否停止执行。

      public void run() {while (!Thread.interrupted()) {// 执行任务}
      }
      
    • 或者在抛出InterruptedException异常的地方处理中断。

      public void run() {try {while (true) {// 执行任务if (Thread.interrupted()) {throw new InterruptedException();}}} catch (InterruptedException e) {// 处理中断异常}
      }
      
    • 在处理中断时,可以选择终止线程的执行,或者采取其他适当的措施。

中断通常用于优雅地停止线程,而不是强制终止线程。这种协作的方式允许线程在中断请求到来时,完成正在进行的工作,并进行清理工作,提高程序的健壮性。

实例3:单击按钮停止进度条滚动

在这里插入图片描述

4.4线程的礼让

线程的礼让是指一个线程表明自己愿意让出当前的CPU执行时间,以便让其他线程有机会执行。我们可以使用Thread.yield()方法来实现线程的礼让。

方法签名为:

public static native void yield();

Thread.yield()方法是一个静态方法,调用它的线程会让出一些时间片,以便其他具有相同或更高优先级的线程有机会执行。然而,yield()方法并不能保证线程会让出CPU执行权,它只是向调度器发出一个提示。

5.线程的优先级

线程调度器使用线程的优先级来决定哪个线程应该优先执行。线程的优先级是一个整数值,范围从Thread.MIN_PRIORITY(1)到Thread.MAX_PRIORITY(10)。默认情况下,每个线程的优先级都是Thread.NORM_PRIORITY(5)。

线程的优先级可以通过setPriority(int priority)方法进行设置。该方法必须在启动线程之前调用。

以下是设置线程优先级的例子:

class MyThread extends Thread {public void run() {for (int i = 1; i <= 5; i++) {System.out.println("Task " + i + " in progress by " + Thread.currentThread().getName());}}
}public class PriorityExample {public static void main(String[] args) {MyThread thread1 = new MyThread();MyThread thread2 = new MyThread();// 设置线程1的优先级为最高thread1.setPriority(Thread.MAX_PRIORITY);// 启动线程1thread1.start();// 启动线程2thread2.start();}
}

在这个例子中,thread1的优先级被设置为最高(Thread.MAX_PRIORITY),而thread2使用默认的优先级。在运行时,具有更高优先级的线程更有可能被调度执行,但并不能保证绝对顺序。

注意,线程优先级的调整并不是在所有平台上都能生效的,而且过度依赖线程优先级可能导致可移植性问题。在实际应用中,更重要的是编写稳健的多线程代码,而不是过分关注线程优先级。

实例4:观察不同优先级的线程执行完毕顺序

在这里插入图片描述

6.线程同步

线程同步是一种机制,用于防止多个线程同时访问共享资源,从而避免数据不一致性和竞态条件。在Java中,主要的线程同步机制包括使用synchronized关键字、wait()notify()notifyAll()方法、以及LockCondition接口等。

6.1线程安全

线程安全是指多个线程访问某个共享资源时,不会出现不确定的结果或导致不一致性的情况。在多线程环境中,如果没有适当的同步机制,共享的数据结构可能会被多个线程同时修改,从而导致数据不一致或其他问题。确保线程安全是多线程编程中非常重要的一个方面。

以下是一些确保线程安全的常见方式:

  1. 使用同步方法: 在方法上使用 synchronized 关键字,确保一次只有一个线程可以执行该方法。

    public synchronized void synchronizedMethod() {// 同步的代码块
    }
    
  2. 使用同步代码块: 在代码块中使用 synchronized 关键字,确保一次只有一个线程可以执行同步代码块。

    public void someMethod() {// 非同步代码synchronized (lockObject) {// 同步的代码块}// 非同步代码
    }
    
  3. 使用 java.util.concurrent 包中的线程安全类: Java提供了一些线程安全的数据结构,如 ConcurrentHashMapCopyOnWriteArrayList 等。

    Map<String, String> concurrentMap = new ConcurrentHashMap<>();
    List<String> copyOnWriteList = new CopyOnWriteArrayList<>();
    
  4. 使用 LockCondition 使用 Lock 接口及其实现类来提供更细粒度的同步控制。

    Lock lock = new ReentrantLock();
    Condition condition = lock.newCondition();lock.lock();
    try {// 临界区的代码
    } finally {lock.unlock();
    }
    
  5. 使用 volatile 关键字: volatile 关键字可以保证变量的可见性,但不能解决复合操作的原子性问题。

    private volatile boolean flag = false;
    
  6. 使用原子类: java.util.concurrent.atomic 包中提供了一些原子类,如 AtomicIntegerAtomicLong 等,用于执行原子操作。

    AtomicInteger atomicInt = new AtomicInteger(0);
    atomicInt.incrementAndGet();
    

确保线程安全是一个综合性的问题,需要在设计阶段考虑,并采用适当的同步措施。选择合适的同步机制取决于具体的应用场景和性能要求。在设计和实现多线程程序时,充分了解并考虑线程安全性是至关重要的。

实例5:开发线程安全的火车售票系统

在这里插入图片描述

6.2线程同步机制

线程同步机制是一组用于确保多个线程访问共享资源时不会发生竞态条件和数据不一致的技术。以下是一些常见的线程同步机制:

  1. synchronized 关键字:

    • synchronized 关键字用于修饰方法或代码块,确保在同一时刻最多只有一个线程能够进入被 synchronized 修饰的方法或代码块。
    // 同步方法
    public synchronized void synchronizedMethod() {// 同步的代码块
    }// 同步代码块
    public void someMethod() {// 非同步代码synchronized (lockObject) {// 同步的代码块}// 非同步代码
    }
    
  2. Lock 和 Condition 接口:

    • Lock 接口提供了比 synchronized 更灵活的锁定机制。通过 ReentrantLock 实现类,可以使用 lock()unlock() 方法来控制临界区的访问。
    • Condition 接口用于在 Lock 上创建条件变量,通过 await()signal()signalAll() 方法实现更灵活的线程通信。
    Lock lock = new ReentrantLock();
    Condition condition = lock.newCondition();lock.lock();
    try {// 临界区的代码
    } finally {lock.unlock();
    }
    
  3. volatile 关键字:

    • volatile 关键字用于声明变量,确保线程之间对该变量的写入和读取操作是可见的。它不提供原子性,仅仅保证了可见性。
    private volatile boolean flag = false;
    
  4. Atomic 类:

    • java.util.concurrent.atomic 包中提供了一组原子类,如 AtomicIntegerAtomicLong,用于执行原子操作,避免竞态条件。
    AtomicInteger atomicInt = new AtomicInteger(0);
    atomicInt.incrementAndGet();
    
  5. ReadWriteLock 接口:

    • ReadWriteLock 接口提供了读写锁,允许多个线程同时读取共享资源,但只允许一个线程写入。
    ReadWriteLock rwLock = new ReentrantReadWriteLock();
    rwLock.readLock().lock();
    // 读取共享资源的操作
    rwLock.readLock().unlock();rwLock.writeLock().lock();
    // 写入共享资源的操作
    rwLock.writeLock().unlock();
    

这些机制可以根据具体的应用场景选择使用,每种机制都有其适用的情况。合理选择同步机制可以提高多线程程序的性能和可维护性,避免潜在的并发问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/206973.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

玩转大数据:3-Hadoop家族的力量与挑战

引言 Hadoop作为一个强大的大数据处理框架&#xff0c;以其分布式计算和存储能力在业界备受关注。然而&#xff0c;Hadoop在应用场景、适用范围、社区支持以及后续持续发展等方面也面临着一些挑战。本文将围绕Hadoop的生态应用&#xff0c;以及来自其他生态的挑战&#xff0c;…

传统算法: Pygame 实现快速排序

使用 Pygame 模块实现了快速排序的动画演示。首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过快速排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序选择一个基准元素(pivot),将数组分成两部分,…

【Spring MVC】Filter 过滤器异常处理 HandlerExceptionResolver 分析

文章目录 前言版本说明测试 Demo1、自定义过滤器 DemoFilter2、自定义业务异常 ServiceException3、自定义异常处理类 DemoExceptionHandler4、DemoController5、请求测试 问题分析1、日志打印记录2、Debug 方法 解决方案1、修改自定义过滤器2、请求测试 解决方案分析1、日志打…

springmvc(基础学习整合)

SpringMVC是Spring框架提供的构建Web应用程序的全功能MVC模块。 在SpringMVC的各个组件中&#xff0c;处理器映射器、处理器适配器、视图解析器称为SpringMVC的三大组件。 springMVC基本介绍&#xff1a; http://t.csdnimg.cn/TOzw9 MVC是一种设计思想&#xff0c;将一个应…

键盘打字盲打练习系列之刻意练习——1

一.欢迎来到我的酒馆 盲打&#xff0c;刻意练习! 目录 一.欢迎来到我的酒馆二.选择一款工具三.刻意练习第一步&#xff1a;基准键位练习第二步&#xff1a;字母键位练习第三步&#xff1a;数字符号键位练习 四.矫正坐姿 二.选择一款工具 工欲善其事必先利其器。在开始之前&…

【开源】基于Vue.js的医院门诊预约挂号系统的设计和实现

项目编号&#xff1a; S 033 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S033&#xff0c;文末获取源码。} 项目编号&#xff1a;S033&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 功能性需求2.1.1 数据中心模块2.1.2…

java-Swing界面简析

一、简析&#xff1a; 调用java提供的 java.swing包下的各种类可以实现界面中的各种组件(比如输入框、密码框按钮、单选框、复选框等) 二、java.swing包的关键类&#xff1a; 顶层容器&#xff1a;Jframe(窗口) 中间容器&#xff1a;Jpanel(面板) 基本控件&#xff1a; I…

asla四大开源组件应用示例(alsa-lib、alsa-utils、alsa-tools、alsa-plugins)

文章目录 alsa设备文件/dev/snd//sys/class/sound/proc/asoundalsa-lib示例1alsa-utilsalsa-toolsalsa-plugins参考alsa设备文件 /dev/snd/ alsa设备文件目录位于,/dev/snd,如下所示 root@xboard:~#ls /dev/snd -l total 0 drwxr-xr-x 2 root root 60 Nov 6 2023 …

《合成孔径雷达成像算法与实现》_使用CS算法对RADARSAT-1数据进行成像

CSA 简介&#xff1a;Chirp Scaling 算法 (简称 CS 算法&#xff0c;即 CSA) 避免了 RCMC 中的插值操作。该算法基于 Scaling 原理&#xff0c;通过对 chirp 信号进行频率调制&#xff0c;实现了对信号的尺度变换或平移。基于这种原理&#xff0c;可以通过相位相乘代替时域插值…

redis相关题

1 什么是Redis Redis(Remote Dictionary Server) 是⼀个使⽤ C 语⾔编写的&#xff0c;开源的&#xff08;BSD许可&#xff09;⾼性能⾮关系型&#xff08;NoSQL&#xff09;的键值对数据库。Redis 可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串&#xff0c;…

代理模式 1、静态代理 2、动态代理 jdk自带动态代理 3、Cglib代理

文章目录 代理模式1、静态代理2、动态代理jdk自带动态代理 3、Cglib代理 来和大家聊聊代理模式 代理模式 代理模式&#xff1a;即通过代理对象访问目标对象&#xff0c;实现目标对象的方法。这样做的好处是&#xff1a;可以在目标对象实现的基础上&#xff0c;增强额外的功能操…

探索接口测试:SOAP、RestFul规则、JMeter及市面上的接口测试工具

引言 在当今软件开发领域&#xff0c;接口测试扮演着至关重要的角色。随着系统变得日益复杂和互联&#xff0c;对于内部和外部接口的测试变得愈发关键。接口测试不仅仅是验证接口的正确性&#xff0c;更是确保系统的稳定性、安全性和性能优越性的关键一环。 本篇博客将带您深入…

【Linux】进程间通信——system V共享内存、共享内存的概念、共享内存函数、system V消息队列、信号量

文章目录 进程间通信1.system V共享内存1.1共享内存原理1.2共享内存数据结构1.3共享内存函数 2.system V消息队列2.1消息队列原理 3.system V信号量3.1信号量原理3.2进程互斥 4.共享内存的使用示例 进程间通信 1.system V共享内存 1.1共享内存原理 共享内存区是最快的IPC形式…

【多传感器融合】BEVFusion: 激光雷达和视觉融合框架 NeurIPS 2022

前言 BEVFusion其实有两篇&#xff0c; 【1】BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework. NeurIPS 2022 | 北大&阿里提出 【2】BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation 2022 | MIT提出 本文先分…

Flutter桌面应用开发之毛玻璃效果

目录 效果实现方案依赖库支持平台实现步骤注意事项话题扩展 毛玻璃效果&#xff1a;毛玻璃效果是一种模糊化的视觉效果&#xff0c;常用于图像处理和界面设计中。它可以通过在图像或界面元素上应用高斯模糊来实现。使用毛玻璃效果可以增加图像或界面元素的柔和感&#xff0c;同…

Word 小知识之 docx 和 doc 的区别

下面我们从4个方面为大家总结了有关于docx和doc的区别&#xff0c;一起来看一看&#xff1a; 1. 文件格式 doc和docx的区别中较大的区别就是文件格式不同&#xff0c;一个是二进制一个为XML格式。doc&#xff1a;是早期的Word文档格式&#xff0c;采用二进制文件格式。这种…

Android Studio Giraffe版本遇到的问题

背景 上周固态硬盘挂了&#xff0c;恢复数据之后&#xff0c;重新换了新的固态安装了Win11系统&#xff0c;之前安装的是Android Studio 4.x的版本&#xff0c;这次也是趁着新的系统安装新的Android开发工具。 版本如下&#xff1a; 但是打开以前的Android旧项目时&#xff…

Windows本地搭建Emby媒体库服务器并实现远程访问「内网穿透」

文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 在现代五花八门的网络应用场景中&#xff0c;观看视频绝对是主力应用场景之一&…

【长文干货】Python可视化教程

文章目录 数据介绍Matplotlib散点图折线图柱形图直方图 Seaborn散点图折线图柱形图直方图 Bokeh散点图折线条形图交互式 Plotly基本组合优化&#xff1a;定制化下拉菜单 总结 数据介绍 在这个小费数据集中&#xff0c;我们记录了20世纪90年代初期餐厅顾客在两个半月内给出的小…

C#学习-9课时

P11 IF判断(上) P11 IF判断(中 ) bool→true or false&#xff1b; 为&#xff1a;变量赋值 为&#xff1a;等于(判断) !为&#xff1a;≠ 优先级&#xff1a;大于 using System; using System.Collections.Generic; using System.Linq; using System.Text; usin…